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Sammendrag 

Mange land kombinerer avgifter på drivstoff med avgiftsfritak og subsidier til elbiler og kjøretøy med 

et lavt drivstofforbruk for å innfri nasjonale CO2-utslippsmål. I Norge har vi både en CO2-avgift og 

en veibruksavgift på drivstoff. Veibruksavgiftens formål er å sørge for at bilistene betaler for eksterne 

kostnader som køer, ulykker, støy, veislitasje og lokal forurensing når de bruker veiene. Denne studien 

analyserer hvordan avgifter på drivstoff og kjøretøy bør kombineres for å dempe slike 

veibruksrelaterte kostnader når et CO2-utslippsmål samtidig skal innfris. 

 

Studien finner at det fortsatt bør være en CO2-avgift samt en veibruksavgift på forbruk av drivstoff. 

Nivået på CO2-avgiften bør imidlertid tilpasses slik at avgiften reflekterer marginalkostnaden ved å 

innfri utslippsmålet. Det vil medføre at husholdningene tar hensyn til utslippsmålet når de tilpasser 

omfanget av kjøring, samt når de velger kjøretøy. Veibruksavgiften bør settes lik gjennomsnittet av de 

veibruksrelaterte kostnadene per liter drivstoff. Det vil bety at kjøretøy med lavere drivstofforbruk enn 

gjennomsnittet påføres en veibruksavgift på drivstoff som er lavere enn veibrukskostnadene som 

påføres samfunnet, og vice versa.  

 

En effektiv beskatning av kjøretøy må kompensere for avvik mellom veibruksrelaterte kostnader og 

veibruksrelaterte avgifter på drivstoff for de forskjellige kjøretøyene. Elbiler, og mer generelt, biler 

som bruker lite drivstoff, bør derfor pålegges høyere kjøpsavgifter enn biler som bruker mye drivstoff. 

En ekstra kjøpsavgift på lavutslippskjøretøy kombinert med avgiftene på drivstoff innebærer at 

rasjonelle husholdninger tar hensyn til veibruksrelaterte kostnader samt at utslippsmålet skal innfris 

når de velger kjøretøy. Ettersom brukere av elbiler ikke betaler veibruksavgifter bør også kjøp av 

elbiler avgiftsbelegges kraftigere enn kjøp av bensin- og dieselbiler. Politikkanbefalingene som 

kommer ut av denne studien forutsetter bl.a. at den teknologiske utviklingen av elbiler er upåvirket av 

politikken, samt at subsidier til nye ladestasjoner tilpasses for å høste eventuelle gevinster forbundet 

med utbygging av ladestasjoner. Den teoretiske analysen tar ikke hensyn til andre sosiale gevinster og 

tap. Andre transportpolitiske virkemidler samt andre former for transportatferd er også utelatt. 
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1.  Introduction 
Several studies investigate how taxes on fuels and vehicles should be designed to curb traffic related 

externalities in the form of CO2-emissions, local air pollution, accidents, congestion and noise, see e.g. 

Innes (1996), Fullerton and West (2002, 2010), Parry and Small (2005) and Bjertnæs (2019a). 

However, countries participating in the Paris agreement have adopted targets with respect to 

greenhouse gas emissions. A number of countries faced with such targets have introduced emission 

targets for their transport sector. Several European countries have introduced bonus-malus schemes 

with tax exemptions and subsidies for purchase of low- and zero emission vehicles to lower 

greenhouse gas emissions, see Klier and Linn (2015). A CO2 emission standard for passenger cars, 

Regulation (EU) 2019/631, applies in EU countries from 2020 as part of a strategy to fulfill emission 

targets for new passenger cars. Several EU countries have also adopted domestic targets even though 

the Effort sharing regulation 2021-2030 incorporates flexibility for participating countries. Efficient 

taxation of road transport in the presence of emission targets are however an underexplored topic in 

the literature. 

 

The present study contributes to the literature by analyzing efficient combinations of taxes on fuels 

and vehicles when emissions from road transport are restricted by an emission target. The study finds 

that a tax on fuel should be combined with heavier taxation of low- and zero emission vehicles to 

fulfill the emission target and to curb mileage-related externalities. Furthermore, the study finds that 

emission targets should be fulfilled by adjusting the CO2 component of the fuel tax. The road user 

charge on fuel should be designed to curb mileage-related externalities. However, the households’ 

choice of vehicle is distorted by the tax on fuel, as the road user charge on fuel deviates from the 

mileage-related externality. The heavier tax on low- and zero emission vehicles is designed to 

neutralizes this distortion. Hence, the tax on fuel combined with the heavier tax on low- and zero 

emission vehicles implements the socially desirable allocation of vehicles.   

 

The rest of the paper is divided into three sections; Section 2 provides a literature review, Section 3 

presents the model and results, and Section 4 concludes.    

2. Literature review    
Parry and Small (2005) show that the optimal uniform tax rate on gasoline consists of an adjusted 

Pigouvian tax component, which includes damage from carbon emissions and other driving-related 

externalities, a Ramsey tax component designed to raise tax revenue, and a congestion feedback 

component, which captures welfare gains as labor supply increases with lower congestion. The 
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component of the tax related to externalities due to congestion and accidents as well as the Ramsey tax 

component are dominant, while the Pigouvian elements related to global warming and congestion 

feedback are modest. Policy instruments in Parry and Small (2005) are restricted, however, as a 

perfect tax on driving-related externalities are excluded. The tax-induced gain in terms of reduced 

externalities per liter of fuel is consequently diminished as households avoid the mileage-related tax 

component by purchasing more fuel-efficient vehicles. Parry and Small’s estimated optimal tax rates 

on gasoline are reduced accordingly. A range of other studies have adopted their method to calculate 

optimal tax rates on fuel; see e.g. Anton-Sarabia and Hernandez-Trillo (2014), Lin and Zeng (2014), 

and Anderson and Auffhammer (2014). Differentiated taxes on purchase of vehicles are not 

considered in these studies, even though Innes (1996), Fullerton and West (2002, 2010) and De Borger 

(2001) show that restrictions on taxes on the use of vehicles imply that taxes on the purchase of 

vehicles are desirable1. Indeed, Bjertnæs (2019a) shows that such avoidance should be neutralized by 

heavier taxation of fuel-efficient vehicles, and hence, that the gasoline tax rate should not be reduced 

due to such avoidance.  

 

Innes (1996) and Fullerton and West (2002, 2010) study the optimal design of taxes on both fuels and 

vehicles. Innes (1996) shows that optimal vehicle taxes, or their regulatory equivalents, approximately 

equal the social cost of a vehicle’s predicted emissions less the portion of costs that is internalized by a 

uniform gasoline tax. Fullerton and West (2002) extend his analysis and explore tax combinations that 

implement the social planner choices of mileage, engine size, pollution control equipment, and fuel 

type. They find that vehicles with bigger engines should be subsidized (taxed) if the tax rate on fuel, 

which equals the marginal damage per gallon of fuel, more (less) than completely internalizes the 

impact of engine size. According to their study, empirical investigations are required to determine 

whether to tax or subsidize vehicles with large engines. Fullerton and West (2010) extend the analysis 

in Fullerton and West (2002) with vehicle age and simulate different scenarios. They find that the 

three-part instrument involving a gas tax, an engine-size subsidy, and a new-car subsidy maximize 

welfare. The engine-size subsidy does not increase welfare significantly, however. Bjertnæs (2019a) 

develops theories in Innes (1996) and Fullerton and West (2002) into operational tax formulas that are 

comparable with current taxation of fuel and vehicles. Scenarios with myopic behavior and electric 

vehicles (EVs) are included. Bjertnæs (2019a) shows that the tax on fuel-efficient vehicles should 

exceed the tax on fuel-intensive vehicles, and that the efficient tax on fuel equals the average marginal 

damage per liter fuel consumed. Hence, avoidance of road user charges on fuel by purchasing more 

                                                      
1 Subsidizing substitutes for polluting goods might be desirable when governments are unable to tax emissions directly, see Sandmo (1976). 
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fuel-efficient vehicles is neutralized by the heavier tax on low- and zero emission vehicles in this case. 

The Ramsey tax component on fuels is excluded in Bjertnæs (2019a) because Jacobs and de Mooij 

(2015) show that a Pigouvian tax on polluting goods without a Ramsey tax component is part of a 

welfare-maximizing tax system within a Mirrlees-economy framework2. The Pigouvian solution in 

Jacobs and de Mooij (2015) is not attainable, however, when policy instruments are restricted to a 

uniform tax on fuel and differentiated taxes on vehicles.   

 

As mentioned, countries participating in the Paris agreement have adopted emission targets. Within 

some countries, such emission targets have given rise to ambitious emission targets for the transport 

sector. Many countries have implemented taxes on fuel combined with tax exemptions or subsidies for 

fuel-efficient vehicles to fulfill the Paris agreement and to curb mileage-related externalities. Efficient 

taxation of road transport in the presence of emission targets are however an underexplored topic in 

the literature. The present study contributes to the literature by analyzing efficient combinations of 

taxes on fuel and vehicles when emissions is restricted by an emission target. The cost per emission 

unit within the model framework in Bjertnæs (2019a) is replaced with an emission target for road 

transport. The study shows that optimal tax formulas in Bjertnæs (2019a) are unchanged when this 

emission target is implemented3. Hence, the emission target is fulfilled by adjusting the CO2-tax 

component on fuel. The CO2-tax on fuel adjusts households driving and choice of vehicles so that the 

target is satisfied. The road user charge on fuel is designed to curb mileage-related externalities. The 

choice of vehicle is distorted by the tax on fuel, however, as the road user charge on fuel deviates from 

the mileage-related externality. The heavier tax on low- and zero emission vehicles is designed to 

neutralizes this distortion. Implementation of a road user charge based on driving might be an 

alternative, see Bjertnæs (2019a) and Bjertnæs (2019b).  

3. The model framework    
The model framework in Bjertnæs (2019a) is extended with an emission target for road transport. 

Other aspects of the model framework are identical. This section therefore draws heavily on the 

presentation of the model framework in Bjertnæs (2019a).      

                                                      
2 A general set of assumptions excludes the Ramsey tax component from a welfare-maximizing tax system according to Atkinson and Stiglitz 
(1976). However, results in the literature differ on the issue of whether environmental taxes should deviate from the Pigouvian rate due to tax 
revenue requirements. The optimal tax rate in Parry and Small (2005) is lower due to tax revenue requirements. Jaeger (2011), however, 
finds that the need for tax revenue contributes to increasing the optimal environmental tax wedge to higher than the Pigouvian tax rate. The 
optimal CO2 tax also exceeds the quota price when the government purchase quotas and the marginal cost of public funds exceed one, 
according to Bjertnæs et. al. (2013). 
3 The mathematical contributions within the present paper is consequently marginal. Mathematics within economics is however mostly 
limited to applications of mathematical theorems. The mathematical contribution is consequently marginal within most economic research.      
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3.1 Households     
All households have the same income. The income is spent on a vehicle, on fuel, and on a non-

polluting good. There are two types of vehicles; fuel-efficient and fuel-intensive. Households’ 

preferences are identical except that they consider the advantages and disadvantages of fuel-intensive 

cars differently. Each household chooses one car, which is either fuel efficient or fuel intensive. 

Household utility, 𝑢𝑢𝑖𝑖, excluding externalities, is given by the quasilinear utility function  

 

(1)  𝑢𝑢𝑖𝑖 = 𝑢𝑢(𝑚𝑚𝑖𝑖) + 𝑏𝑏𝑖𝑖 + 𝑐𝑐𝑖𝑖,   

 

when a fuel-intensive vehicle is chosen. The utility, 𝑢𝑢𝑖𝑖, is determined by driving distance measured in 

kilometers, 𝑚𝑚𝑖𝑖, consumption of a non-polluting consumer good, 𝑐𝑐𝑖𝑖, and the utility associated with 

owning a fuel-intensive vehicle, 𝑏𝑏𝑖𝑖. Household utility when choosing a fuel-efficient vehicle equals 

the utility function in equation (1), but with 𝑏𝑏𝑖𝑖 removed from the equation. The marginal utility of 

additional driving distance is positive, 𝑢𝑢′ > 0, but declines as the driving distance increases, 𝑢𝑢′′ < 0. 

This feature of the utility function captures that some trips are more important/ necessary to 

households than other trips. The vehicle-specific utility parameter, 𝑏𝑏𝑖𝑖, differs across households as 

transportation needs and requirements differ across households. The parameter is high for households 

which prefer high engine power due to e.g. heavy loads and frequent use of trailer. Range anxiety 

associated with EVs might be another reason when fossil fuel vehicles are compared with EVs. Note 

that some households may dislike the fuel-intensive vehicle, i.e., their utility parameter, 𝑏𝑏𝑖𝑖, is negative. 

Such vehicle specific preferences are implemented to study the allocation of vehicles. The 

specification of utility is chosen to be able to study the tradeoff faced by the government when taxes 

on fuel and vehicles are designed to satisfy a constraint on emissions, and to arrive at optimal tax 

formulas for fuel and vehicles in this setting. Transportation-policy aspects which are excluded from 

the model framework is discussed in later sections. Household budget constraint is given by the 

equation  

 

(2)  𝑐𝑐𝑖𝑖 = 𝑦𝑦 + 𝑘𝑘 − �𝑝𝑝𝑓𝑓 + 𝑡𝑡𝑓𝑓�𝑓𝑓𝑗𝑗𝑚𝑚𝑖𝑖 − 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐,𝑗𝑗 − 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐,𝑗𝑗,   

 

where 𝑗𝑗 = ℎ𝑖𝑖𝑖𝑖ℎ, 𝑙𝑙𝑙𝑙𝑙𝑙 indicates fuel-intensive and fuel-efficient vehicle, respectively. Consumption of 

the non-polluting good, 𝑐𝑐𝑖𝑖, equals a fixed income, 𝑦𝑦, plus government transfers, 𝑘𝑘, minus costs of fuel, 

(𝑝𝑝𝑓𝑓 + 𝑡𝑡𝑓𝑓)𝑓𝑓𝑗𝑗𝑚𝑚𝑖𝑖, which is given by the price per liter of fuel, 𝑝𝑝𝑓𝑓, the tax per liter of fuel, 𝑡𝑡𝑓𝑓, and the fuel 

economy measured in liters per kilometer, 𝑓𝑓𝑗𝑗, minus the tax on the chosen vehicle, 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐,𝑗𝑗, minus the 

price of the chosen vehicle, 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐,𝑗𝑗. Utility maximization with respect to 𝑚𝑚𝑖𝑖 implies that    

si'

si'

si'
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(3) 𝑢𝑢′𝑚𝑚𝑖𝑖(𝑚𝑚𝑖𝑖) = (𝑝𝑝𝑓𝑓 + 𝑡𝑡𝑓𝑓)𝑓𝑓𝑗𝑗,     

 

which implicitly defines the following function: 

 

(4)  𝑚𝑚𝑖𝑖 = 𝑚𝑚𝑗𝑗(𝑡𝑡𝑓𝑓).  

 

Equation (3) shows that the marginal gain in utility of one additional kilometer, 𝑢𝑢′𝑚𝑚𝑖𝑖, equals the 

private cost of driving one additional kilometer, (𝑝𝑝𝑓𝑓 + 𝑡𝑡𝑓𝑓)𝑓𝑓𝑗𝑗. Hence, driving is restricted to trips where 

the benefit exceeds the costs4. Equation (3) also implies that total driving distance is longer for 

households with a fuel-efficient vehicle compared to households with a fuel-intensive vehicle. This is 

one of the challenges connected with the transition towards fuel-efficient vehicles, and hence, a novel 

feature of the model framework.  

 

As mentioned each household chooses one car, which is either fuel efficient or fuel intensive. The 

impact of a tax on purchase of fuel-intensive vehicles on the choice of vehicles is identical with the 

impact of a subsidy on purchase of fuel-efficient vehicles. The tax on purchase of fuel-intensive 

vehicles is also equivalent with a subsidy on fuel-efficient vehicles within the government 

optimization problem. The tax on purchase of fuel-intensive vehicles, 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐,ℎ𝑖𝑖𝑖𝑖ℎ, is therefore labeled 

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐, and the tax on purchase of fuel-efficient vehicles is set equal to zero. The indirect utility function 

net of externalities for each household, 𝑖𝑖, for each type of vehicle, is found by inserting equation (2) 

into equation (1), and then implementing equation (4).    

 

(5)      𝑣𝑣𝑖𝑖,ℎ𝑖𝑖𝑖𝑖ℎ = 𝑢𝑢 �𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓��+ 𝑏𝑏𝑖𝑖 + 𝑦𝑦 + 𝑘𝑘 − �𝑝𝑝𝑓𝑓 + 𝑡𝑡𝑓𝑓�𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓� − 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐,ℎ𝑖𝑖𝑖𝑖ℎ, and  

𝑣𝑣𝑖𝑖,𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑢𝑢 �𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓��+ 𝑦𝑦 + 𝑘𝑘 − �𝑝𝑝𝑓𝑓 + 𝑡𝑡𝑓𝑓�𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓� − 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐,𝑙𝑙𝑙𝑙𝑙𝑙,    

 

Assume that households are ranked from high to low according to their utility parameter, 𝑏𝑏𝑖𝑖, and that 

the first 𝑁𝑁 households have chosen the fuel-intensive vehicle. Assume that the accumulated utility 

from their 𝑏𝑏𝑖𝑖-utility parameter, 𝐵𝐵𝐵𝐵, is given by the expression  

(6) 𝐵𝐵𝐵𝐵 = 𝑏𝑏𝑚𝑚𝑐𝑐𝑚𝑚𝑁𝑁 − 𝑎𝑎
2� 𝑁𝑁2,  

                                                      
4 Vehicle maintenance and capital depreciation are excluded from the operating costs of vehicles to simplify the model framework. However, 
a tax designed to correct for negative externalities is not influenced by these operating costs when externalities are not influenced by them. 
Maintenance could be preserved by maintenance control, for example. 
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where parameter 𝑎𝑎 > 0 and no restrictions are imposed on parameter 𝑏𝑏𝑚𝑚𝑐𝑐𝑚𝑚. Households choose the 

type of vehicle that maximizes utility. Households therefore choose the fuel-intensive vehicle up to the 

point where household number 𝑁𝑁 is indifferent between types of vehicles. This equilibrium condition 

is given by the expression  

(7) 𝑢𝑢 �𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓�� + 𝑏𝑏𝑚𝑚𝑐𝑐𝑚𝑚 − 𝑎𝑎𝑁𝑁 + 𝑦𝑦 + 𝑘𝑘 − �𝑝𝑝𝑓𝑓 + 𝑡𝑡𝑓𝑓�𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓� − 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐,ℎ𝑖𝑖𝑖𝑖ℎ      

  = 𝑢𝑢 �𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓�� + 𝑦𝑦 + 𝑘𝑘 − �𝑝𝑝𝑓𝑓 + 𝑡𝑡𝑓𝑓�𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓� − 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐,𝑙𝑙𝑙𝑙𝑙𝑙.              

 

Households that derive higher utility from owning a fuel-intensive vehicle will choose a fuel-intensive 

vehicle. Households that derive lower utility from owning a fuel-intensive vehicle will choose a fuel-

efficient vehicle. Equation (7) determines the number of households which choose the fuel-intensive 

vehicle, as a function of fuel taxes, vehicle taxes, exogenous parameters and prices. Taxation of both 

fuel and vehicles is crucial for choice of vehicles, see Sallee et al. (2016) and Busse et al. (2013). This 

feature is crucial for taxation designed to facilitate the transition towards fuel-efficient vehicles, and 

hence, is a novel feature of the model framework. Equation (7) is written as equation (8) to simplify 

notations.  

(8) 𝑁𝑁 = 𝑁𝑁(𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐)      

 

The total number of households is 𝑁𝑁�. Hence, the number of households that choose the fuel-efficient 

vehicle amounts to 

(9) 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑁𝑁� − 𝑁𝑁.  

3.2 The emission target  
Consumption of each liter of fuel generates a fixed amount of CO2 emission. Hence, the CO2 emission 

target translates into a fuel consumption target, 𝑆𝑆𝐶𝐶𝐶𝐶2. 

 

(10) 𝑆𝑆𝐶𝐶𝐶𝐶2 =  𝑁𝑁𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓�+ (𝑁𝑁� − 𝑁𝑁)𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓�. 

  

The fuel consumption target, 𝑆𝑆𝐶𝐶𝐶𝐶2, equals the number of liters of fuel consumed by households with 

fuel-intensive vehicles, 𝑁𝑁𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ(𝑡𝑡𝑓𝑓), plus the number of liters of fuel consumed by households 

with fuel-efficient vehicles, (𝑁𝑁� − 𝑁𝑁)𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓�. A share of the current lifetime emissions from 

vehicles originates from production of vehicles and energy; see Hawkins et al. (2012). However, CO2 

emissions from production of energy and vehicles are excluded from the model framework. This 

assumption is appropriate when all polluters pay for their own emissions. The assumption is also 
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relevant when these emissions are included in an emission trading system like that of the EU, and thus 

are neutralized by adjustments in other emission sources.  

3.3 Social costs  
The cost of mileage-related damage, 𝑆𝑆𝑑𝑑, is given by the expression 

 

(11) 𝑆𝑆𝑑𝑑 =  𝑝𝑝𝑑𝑑𝑁𝑁𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓�+ 𝑝𝑝𝑑𝑑(𝑁𝑁� − 𝑁𝑁)𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓�.    

 

𝑆𝑆𝑑𝑑 equals the damage per kilometer, 𝑝𝑝𝑑𝑑, multiplied by the number of kilometers driven by households 

with fuel-intensive vehicles, 𝑁𝑁𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓�, plus the damage per kilometer, 𝑝𝑝𝑑𝑑, multiplied by the 

number of kilometers driven by households with fuel-efficient vehicles, (𝑁𝑁� −𝑁𝑁)𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓�. The costs 

of traffic congestion and damage due to accidents dominates, while the costs of local pollution are 

more modest. These costs are influenced by a range of factors like drinking and driving, reckless 

driving and speeding. It is assumed that the present level of drinking and driving, reckless driving and 

speeding is preserved by current traffic laws and regulations.    

3.4 Taxation of fuel and vehicles       
Tax revenue collected is transferred to households. Each household receives a lump-sum transfer, 𝑘𝑘. 

The transfer is chosen to conform to the constraint of a balanced government budget. The government 

budget constraint is given by the following equation  

 

(12) 𝑁𝑁�𝑘𝑘 =  𝑁𝑁𝑡𝑡𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓� + 𝑁𝑁𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 + (𝑁𝑁� −𝑁𝑁)𝑡𝑡𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓�.         

 

Total transfers, 𝑁𝑁�𝑘𝑘, equal tax revenue from taxation of fuel for fuel-intensive 

vehicles, 𝑁𝑁𝑡𝑡𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓�, plus tax revenue from taxation of fuel-intensive vehicles, 𝑁𝑁𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐, plus 

tax revenue from taxation of fuel for fuel-efficient vehicles, (𝑁𝑁� − 𝑁𝑁)𝑡𝑡𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓�.  

 

The welfare function is given by the indirect utility function minus driving related social costs. The 

sum of indirect utility functions net of externalities, equation (5), is found by accumulating over the 

number of individuals choosing fuel-efficient and fuel-intensive vehicles. The accumulated utility 

associated with owning a fuel-intensive vehicle is given by equation (6). The driving related social 

costs is given by equations (11). The government budget constraint, equation (12), and the condition 

determining the allocation of vehicles, equation (8), are incorporated in the welfare function. The 
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government chooses the uniform tax rate on fuel, 𝑡𝑡𝑓𝑓, and the tax on purchase of fuel-intensive 

vehicles, 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐, to maximize welfare given the emission target, equation (10). The problem is 

 

(13) Max
𝑡𝑡𝑓𝑓,𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐

 𝑁𝑁�𝑦𝑦 + 𝑁𝑁�𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐�𝑢𝑢 �𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓��+ 𝑏𝑏𝑚𝑚𝑐𝑐𝑚𝑚𝑁𝑁�𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐� −
1
2
𝑎𝑎𝑁𝑁(𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐)2   

+ �𝑁𝑁� − 𝑁𝑁�𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐�� 𝑢𝑢 �𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓�� − 𝑁𝑁(𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐)�𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐,ℎ𝑖𝑖𝑖𝑖ℎ + 𝑝𝑝𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ(𝑡𝑡𝑓𝑓)� 

−�𝑁𝑁� −𝑁𝑁�𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐�� �𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐,𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑝𝑝𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓��−𝑝𝑝𝑑𝑑𝑁𝑁�𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐�𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓� 

  𝑝𝑝𝑑𝑑(𝑁𝑁� − 𝑁𝑁(𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐))𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓�, 

 

subject to the emission target 

 

𝑆𝑆𝐶𝐶𝐶𝐶2 =  𝑁𝑁𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓�+ (𝑁𝑁� − 𝑁𝑁)𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓�. 

 

The Lagrangian of the government’s maximization problem is  

 

(14) 𝐿𝐿 = 𝑁𝑁�𝑦𝑦 + 𝑁𝑁�𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐�𝑢𝑢 �𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓��+ 𝑏𝑏𝑚𝑚𝑐𝑐𝑚𝑚𝑁𝑁�𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐� −
1
2
𝑎𝑎𝑁𝑁(𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐)2     

  + �𝑁𝑁� − 𝑁𝑁�𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐�� 𝑢𝑢 �𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓�� − 𝑁𝑁�𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐��𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐,ℎ𝑖𝑖𝑖𝑖ℎ + 𝑝𝑝𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓�� 

 −�𝑁𝑁� − 𝑁𝑁�𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐�� �𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐,𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑝𝑝𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓��−𝑝𝑝𝑑𝑑𝑁𝑁�𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐�𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓� 

  −𝑝𝑝𝑑𝑑(𝑁𝑁� − 𝑁𝑁(𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐))𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓� 

  −𝑝𝑝𝐶𝐶𝐶𝐶2 �𝑁𝑁�𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐�𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓�+ �𝑁𝑁� − 𝑁𝑁�𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐�� 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓� − 𝑆𝑆𝐶𝐶𝐶𝐶2�, 

 

where 𝑝𝑝𝐶𝐶𝐶𝐶2 equals the shadow price of the fuel consumption target. The tax on fuel affects the number 

of fuel-intensive vehicles, 𝑁𝑁(𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐), the driving distance of fuel-intensive vehicles, 𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ(𝑡𝑡𝑓𝑓), and 

the driving distance of fuel-efficient vehicles, 𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡𝑓𝑓). The tax on purchase of fuel-intensive vehicles 

affects the number of fuel-intensive vehicles, 𝑁𝑁(𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐). Note that choice of transfers, 𝑘𝑘, is excluded 

from the optimization problem as the government budget constraint is incorporated in the welfare 

function. First order conditions and tax formulas become identical with first order conditions and tax 

formulas in Bjertnæs (2019a). Hence, interpretation of results is therefore closely related to 

interpretations in Bjertnæs (2019a). The first order conditions imply that 
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(15)  𝑢𝑢 �𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓�� + 𝑏𝑏𝑚𝑚𝑐𝑐𝑚𝑚 − 𝑎𝑎𝑁𝑁 − 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐,ℎ𝑖𝑖𝑖𝑖ℎ − 𝑝𝑝𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓� 

−𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓�−𝑝𝑝𝑑𝑑𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓�      

      = 𝑢𝑢 �𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓�� − 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐,𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑝𝑝𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓� − 𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓� − 𝑝𝑝𝑑𝑑𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓�.   

 

See appendix A. Second order conditions are presented in Appendix B. Equation (15) shows that 

benefits minus the private and social costs of one additional fuel-intensive vehicle equal the benefits 

minus private and social costs of one additional fuel-efficient vehicle5.  

 

Tax theory is unable to produce a unique optimal tax rate on polluting goods due to the choice of 

normalization, see Fullerton (1997). The explanation is that the allocation of resources is unchanged 

when a uniform tax increase on consumer goods is combined with a proportional, revenue-neutral 

reduction in taxation of income. The optimal tax rate on fuel is therefore labeled the optimal additional 

tax rate on fuel. This tax rate equals   

 

(16) 𝑡𝑡𝑓𝑓∗ = 𝑝𝑝𝐶𝐶𝐶𝐶2 +
�𝑁𝑁𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓+(𝑁𝑁�−𝑁𝑁)𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓�𝑝𝑝𝑑𝑑

𝑁𝑁𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ+(𝑁𝑁�−𝑁𝑁)𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙
.       

 

The optimal additional tax rate on fuel, 𝑡𝑡𝑓𝑓∗, equals the shadow price per liter of fuel, 𝑝𝑝𝐶𝐶𝐶𝐶2, plus the road 

user charge on fuel, labeled 𝑡𝑡𝑑𝑑, given by the second term on the right-hand side of equation (16). This 

road user charge equals the reduction in mileage-related damage due to a marginal tax increase on fuel 

(the numerator), divided by the reduction in fuel consumption due to a marginal tax increase on fuel 

(the denominator). Thus, the road user charge on fuel equals the reduction in mileage-related damage 

per liter of reduced fuel consumption due to a marginal tax increase on fuel. The road user charge on 

fuel exceeds mileage-related externalities, 𝑝𝑝𝑑𝑑, for fuel-intensive vehicles. The road user charge on fuel 

is lower than mileage-related externalities, 𝑝𝑝𝑑𝑑, for fuel-efficient vehicles6. The welfare-maximizing 

driving distance for fuel-intensive (fuel-efficient) vehicles is lower (higher) than the social planner 

                                                      
5 A detailed inspection of equation (15) shows that the driving-related utility of one additional fuel-intensive vehicle, 𝑢𝑢 �𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓��, plus the 
additional utility of owing a fuel-intensive vehicle, 𝑏𝑏𝑚𝑚𝑐𝑐𝑚𝑚 − 𝑎𝑎𝑁𝑁, minus the producer price of a fuel-intensive vehicle, 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐,ℎ𝑖𝑖𝑖𝑖ℎ, minus the 
production cost of fuel for one additional fuel-intensive vehicle, 𝑝𝑝𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓�, minus shadow costs related to CO2 emissions of one 
additional fuel-intensive vehicle, 𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓�, minus mileage-related damage attributable to one additional fuel-intensive 
vehicle, 𝑝𝑝𝑑𝑑𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓�, equal the driving-related utility of one additional fuel-efficient vehicle, 𝑢𝑢 �𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓��, minus the producer price of a 
fuel-efficient vehicle, 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐,𝑙𝑙𝑙𝑙𝑙𝑙, minus the production cost of fuel for one additional fuel-efficient vehicle, 𝑝𝑝𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓�, minus shadow 
costs related to CO2 emissions from one additional fuel-efficient vehicle, 𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓�, minus mileage-related damage related to one 
additional fuel-efficient vehicle, 𝑝𝑝𝑑𝑑𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓�.   
6 This result is consistent with the result in Diamond (1973).  
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solution as policy tools are restricted. This outcome shows that the approach in Fullerton and West 

(2002), where the tax system is designed to implement the social planner solution, is inconsistent with 

the optimal tax solutions in the present study.     

 

The welfare-maximizing tax on fuel-intensive vehicles equals 

 

(17) 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐∗ =
𝑁𝑁�−𝑁𝑁
𝑁𝑁� �𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙−𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ�

𝑁𝑁
𝑁𝑁�  
𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓

𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ+
𝑁𝑁�−𝑁𝑁
𝑁𝑁� 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙

𝑝𝑝𝑑𝑑𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓∗� +
𝑁𝑁
𝑁𝑁�  
𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓

�𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙−𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ�

𝑁𝑁
𝑁𝑁�  
𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓

𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ+
𝑁𝑁�−𝑁𝑁
𝑁𝑁� 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙

𝑝𝑝𝑑𝑑𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓∗�.        

 

Both terms on the right side are negative. Hence, there should be heavier taxes on fuel-efficient 

vehicles than on fuel-intensive vehicles. Inserting the expression for the road user charge on fuel, 𝑡𝑡𝑑𝑑, 

from equation (16) into equation (17) implies that 

 

(18)  𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐∗ = �𝑝𝑝𝑑𝑑 − 𝑡𝑡𝑑𝑑𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ�𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓� − (𝑝𝑝𝑑𝑑 − 𝑡𝑡𝑑𝑑𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙)𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓� .        

 

Equation (18) shows that the optimal tax on fuel-intensive vehicles, 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐∗ , equals mileage-related 

damage minus road user charges for fuel-intensive vehicles, �𝑝𝑝𝑑𝑑 − 𝑡𝑡𝑑𝑑𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ�𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓�, minus the 

difference between mileage-related damage and road user charges for fuel-efficient vehicles, (𝑝𝑝𝑑𝑑 −

𝑡𝑡𝑑𝑑𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙)𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓�. Future taxes on fuel are fully accounted for by households with rational 

expectations. Therefore, the CO2 tax on fuel provides a correct incentive for the choice of vehicle in 

this case. The choice of vehicle is distorted, however, as the mileage-related tax on fuel deviates from 

the mileage-related externality. The heavier tax on fuel-efficient vehicles neutralizes this distortion. 

Hence, household’s choice of vehicles implements the socially desirable allocation of vehicles given 

by equation (15).  

 

The model framework is unable to distinguish between a tax on fuel-efficient vehicles and a subsidy 

on fuel-intensive vehicles. However, a welfare maximizing tax system consists of a Pigouvian tax on 

polluting goods designed to correct for externalities according to Jacobs and de Mooij (2015). 

Adopting this insight implies that tax formulas within the present study should be interpreted as 

environmental taxes designed to correct for externalities. Hence, purchase of fuel-intensive vehicles 

should be subsidized with an amount which equals the difference between road user charges on fuel 

and the mileage-related damage associated with each fuel-intensive vehicle, i.e. the first expression on 

the right-hand side of equation (18). Purchase of fuel-efficient vehicles should be taxed with the 
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difference between mileage-related damage and road user charges on fuel associated with each fuel-

efficient vehicle, i.e. the second expression on the right-hand side of equation (18). Fullerton (1997) 

shows that the optimal commodity tax on clean and polluting goods is uniform when combined with 

an optimal environmental tax on polluting goods. Hence, tax formulas within the present study should 

be combined with a uniform commodity tax on fuel, both types of vehicles, and on the non-polluting 

good according to this insight.  

 

Some limitations should be considered when results are interpreted. The simple one-period model 

framework adopted, with specific externalities and preferences with respect to driving and type of 

vehicle, suggests that results are limited to specific settings. A share of the mileage-related damage 

might e.g. be related to the weight of vehicles, and hence, to the fuel consumption of vehicles, see 

Anderson and Auffhammer (2014). Hence, a mileage-related tax on fuel might be desirable to correct 

for this share of the mileage-related externalities. The model framework excludes choices, such as 

economical driving (Bjertnæs 2019b), and other externalities, like the race for status. Other policy 

tools designed to reduce traffic-related externalities, like parking fees, toll roads and CAFE standards, 

are omitted from the model framework. Heterogeneity along dimensions like demand for driving, 

income and environmental awareness are also excluded. The simple model framework is, however, 

able to arrive at optimal tax formulas that are mainly determined by the damage fuel and vehicles 

inflict upon society. Such damage is determined by empirical estimates, so tax formulas are mainly 

determined by these estimates.     

3.5 Electric Vehicles   
A user charge on EVs is desirable to correct for mileage-related externalities. However, this section 

analyzes optimal taxation of fuel and purchases of EVs when the use of EVs is not taxed. The problem 

is analyzed within the present model framework by replacing low-emission vehicles with EVs, and by 

assuming that the private cost of using an EV is zero. CO2 emissions from production of electricity 

and EVs are excluded. Thus, the driving distance for EVs is determined by the condition, 𝑢𝑢′𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙 = 0. 

Private operating costs of EVs is excluded from the model framework in this case. However, a tax 

designed to correct for negative externalities is not influenced by such operating costs when 

externalities are not influenced by such operating cost. Driving distance, and hence, mileage-related 

externalities are magnified when private operating costs equals zero. This problem is however solved 

by implementing appropriate driving distance for EVs within optimal tax formulas.  
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The maximization problem of the government is found by inserting 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙 = 0, and by assuming that 

𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡𝑓𝑓) is fixed in problem (13).  First order conditions imply that   

 

(19) 𝑢𝑢′𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ =  𝑝𝑝𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ + 𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ + 𝑝𝑝𝑑𝑑.        

 

Inserting equation (19) into equation (3) gives   

 

(20)  𝑡𝑡𝑓𝑓∗∗ = 𝑝𝑝𝐶𝐶𝐶𝐶2 + 𝑝𝑝𝑑𝑑
𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ

.        

 

Thus, the optimal tax difference between fuel and non-polluting consumer goods equals the shadow 

price of CO2 emissions plus the mileage-related marginal damage of road transport. The first order 

condition with respect to 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 combined with equations (20) and (7) implies that  

 

(21)  𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐∗∗ = −𝑝𝑝𝑑𝑑𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙.    

 

Equation (21) shows that the optimal additional tax on purchase of EVs equals mileage-related 

damage associated with EVs. The shadow price of CO2 emissions and mileage-related damage due to 

fossil fuel vehicles with an average fuel efficiency is incorporated into the price of fuel. The cost of 

mileage-related damage associated with EVs is incorporated into the price of the vehicle. Thus, 

rational households face costs attributable to externalities when choosing between a fossil fuel vehicle 

with average fuel consumption and an EV. Note that greater damage from CO2 emissions, preferences 

for vehicles due to factors such as range anxiety, and price differences between vehicles do not alter 

the optimal additional tax on EVs expressed by equation (21).  

 

Some additional aspects should be considered, however. First, one may argue that driving distance is 

likely to differ among households with an EV, and hence, that a tax on EVs consequently deviates 

from mileage-related damage for some households. The present study is unable to illuminate on this 

issue. Diamond (1973) however argue that a uniform price which corrects for externalities which 

differ among households should be set equal to a weighted average of externalities7. Second, several 

empirical studies find that households have rational expectations when purchasing vehicles; see Sallee 

et al. (2016) and Busse et al. (2013). The analyzes above have adopted this assumption. Some studies 

                                                      
7 Differences in mileage-related costs across geographic regions call for geographic tax differentiation across regions. Implementation of 
geographic tax differentiation favors an annual vehicle tax, as differentiated taxes on purchases are more likely to be subject to evasion. 
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find support for myopic behavior, however; see Grigolon et al. (2014), Allcott and Wozny (2014) and 

Gillingham et al. (2021). Bjertnæs (2019a) shows that the optimal additional tax on zero emission 

vehicle is positive in the case with myopic behavior. Hence, the additional tax on zero emission 

vehicles designed to neutralize distortions due to a mileage tax on fuel exceeds tax rebates designed to 

correct for myopic behavior. Third, several car manufacturers have recently been caught manipulating 

tests to classify their vehicles as fuel efficient. Taxes are avoided and customers are cheated. 

Customers may however benefit as prices are reduced, see Reynaert and Sallee (2021). The heavier 

tax on low- and zero-emission vehicles lowers incentives for such avoidance, and hence contributes to 

solving this problem. Improved testing is of course an alternative solution to this problem. Fourth, 

countries have implemented tax exemptions and subsidies for EVs to promote the development of 

clean-transport technology, and possibly to prepare their car industry for an electric future. The present 

study shows that the optimal additional tax on EVs equals the value of their mileage-related 

externalities when the use of EVs is untaxed and other market imperfections are absent. This optimal 

additional tax is reduced if sales of new EVs boost technological development. The optimal tax is also 

reduced if rebates are designed to protect the domestic car industry. It is challenging to quantify such 

externalities, but additional adverse impacts, such as increased car use and less public transport, 

should be expected; see Holtsmark and Skonhoft (2014) and Aasness and Odeck (2015). Fifth, 

externalities associated with a network of charging stations could also justify tax exemptions for the 

purchase of EVs; see Greaker and Midttømme (2016). Shanjun et al. (2017) find, however, that direct 

subsidies for investing in charging stations are more efficient than subsidies for EVs.    

4. Conclusion  
Several European countries redesigned their vehicle tax system in the mid-2000s and implemented 

bonus-malus schemes that favored fuel-efficient vehicles. Some countries imposed a CO2-based tax on 

purchase of vehicles, while other countries imposed annual CO2-based registration taxes; see Klier and 

Linn (2015). According to their study, CO2-based tax on purchase of vehicles leads to larger 

reductions in the average emission rates of new vehicles. The emission reduction of such taxation is 

eroded as sales of new vehicles expand, however (Alberini and Bareit, 2017), and as the retirement of 

high-emitting vehicles is postponed (Alberini et al., 2018). The annual CO2-based registration tax, 

levied on both new and existing vehicles, is not burdened by these undesirable impacts according to 

Alberini et al. (2018). The impact of these annual taxes on the average emission rates of new vehicles 

is modest, however, (Klier and Linn, 2015), and the cost per ton of reduced CO2 emissions is 

substantial (Alberini and Bareit, 2017). Additional tax exemptions and subsidies for purchase of low- 

and zero emission vehicles were later introduced in many countries to fulfill emission targets. 
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Efficient taxation of road transport in the presence of emission targets are an underexplored topic in 

the literature. The present study contributes to the literature by analyzing efficient combination of 

taxes on fuel and vehicles when emissions from road transport is restricted by an emission target. The 

study finds that a tax on fuel should be combined with heavier taxation of low- and zero emission 

vehicles to fulfill the emission target and to curb mileage-related externalities. The emission target is 

fulfilled by adjusting the CO2-tax component on fuel. The road user charge on fuel is designed to curb 

mileage-related externalities. The choice of vehicle is distorted by the tax on fuel, however, as the 

road-user charge on fuel deviates from the mileage-related externality. The heavier tax on low- and 

zero emission vehicles is designed to neutralize this distortion.  

 

The expansion of EVs create a need for road user charges that are not based on fuel. A few countries 

have introduced GPS-based road user charges on heavy duty vehicles, but systems for light-duty 

passenger vehicles are lagging. Bjertnæs (2019a) shows that the optimal tax on EVs equals the tax on 

fossil fuel vehicles when the road user charge is based on GPS tracking, the tax on fuel equals the 

marginal damage of CO2 emissions, and other market imperfections are absent8. This solution leads to 

a more efficient allocation of vehicles and driving than the solution with a uniform tax on fuel 

combined with heavier taxation of fuel-efficient vehicles; see also Ashley et al. (2017) and Montag 

(2015). However, a GPS-based system is more costly to administer and is likely to impose 

information-processing costs and undesirable surveillance; see Parry et al. (2007). One may argue that 

a road-user charge based on odometer readings or pay-as-you-drive insurance combined with 

congestion charges and toll roads resembles GPS-based road user charges. However, such charges are 

also costly to administer, are susceptible to evasion, and leads to undesirable traffic planning designed 

to avoid toll stations; see Parry (2002).        
 

  

                                                      
8 Myopic behavior calls for tax differentiation according to Jansen and Denis (1999). 



18 

References   
Aasness, Marie A. and Odeck, James (2015). The increase of Electric Vehicle usage in Norway- 
incentives and adverse effects, Eur. Transp. Res. Rev, 7: 34.  
 
Alberini, A. and Bareit, M. (2017). The effects of registration taxes on new car sales and emissions: 
Evidence from Switzerland, Resource and Energy Economics, 
http://dx.doi.org/10.1016/j.reseneeco.2017.03.005.  
 
Alberini, A. and Bareit, M. and Filippini, M. (2018). The impact of emissions-based taxes on the 
retirement of used and inefficient vehicles: The case of Switzerland, Journal of Environmental 
Economics and Management, 88, 234-258.  
 
Allcott, H., Wozny, N. (2014). Gasoline prices, fuel economy, and the energy paradox, The Review of 
Economics and Statistics, vol. XCVI, nr 5.  
 
Anderson, M. L. and Auffhammer, M. (2014). Pounds That Kill: The External Costs of Vehicle 
Weight, Review of Economic Studies, 81, 535-571.  
 
Anton-Sarabia, A. and Hernandez-Trillo, F. (2014). Optimal gasoline tax in developing, oil-producing 
countries: The case of Mexico, Energy Policy, Vol 67, 564–571.  
 
Ashley, L., Wikram, M. and Clifford, W. (2017). From gallons to miles: A disaggregated analysis of 
automobile travel and externality taxes, Journal of public Economics, 152, 34-46.    
 
Atkinson, A.B., and J.E. Stiglitz (1976). The Design of Tax Structure: Direct versus Indirect Taxation, 
Journal of Public Economics, 6, 55 - 75. 
 
Bjertnæs, G. H., Tsygankova, M. and Martinsen, T. (2013). Norwegian Climate Policy Reforms in the 
Presence of an International Quota Market, Energy Economics, 39, 147-158. 
 
Bjertnæs G. H. M. (2019a). Efficient Combinations of Taxes on Fuel and Vehicles, The Energy 
Journal, Vol 40, DOI: 10.5547/01956574.40.SI1.gbje  
 
Bjertnæs G. H. M. (2019b). Efficient Taxation of Fuel and Road Use, Discussion Papers no. 905, 
Statistics Norway. 
 
Busse, M. R., Knittel, C. R., and Zettelmyer, F. (2013). Are Consumers Myopic? Evidence from New 
and Used Car Purchases, American Economic Review, 103 (1), 220-256. 
 
De Borger, B. (2001). Discrete choice models and optimal two-part tariffs in the presence of 
externalities: optimal taxation of cars, Regional Science and Urban Economics 31, 471-504.  
 
Diamond, P. A. (1973). Consumption externalities and imperfect corrective pricing, The Bell Journal 
of Economics and Management Science, Vol. 4, No 2.  
 
Fullerton, D. (1997). Environmental Levies and Distortionary Taxation: Comment, American 
Economic Review, Vol. 87 Iss. 1. 
 
Fullerton, D., and West, S. E. (2002). "Can Taxes on Cars and on Gasoline Mimic an Unavailable Tax 
on Emissions", Journal of Environmental Economics and Management, Vol. 43.  

http://dx.doi.org/10.1016/j.reseneeco.2017.03.005
https://doi.org/10.5547/01956574.40.SI1.gbje


19 

Fullerton, D., and West, S. E. (2010). Tax and Subsidy Combinations for the Control of Car Pollution, 
The B.E. Journal of Economic Analysis & Policy, Volume 10, Issue 1. 
 
Gillingham, K. T., Houde, S. and van Benthem A. A., 2021, Consumer Myopia in Vehicle Purchases: 
Evidence form a Natural Experiment, Forthcoming in American Economic Journal: Economic Policy.   
 
Greaker, M and Midttømme, K. (2016). Optimal Environmental Policy with Network Effects: Will 
Pigovian Taxation Lead to Excess Inertia?, Journal of Public Economics, 143, 27-38 
 
Grigolon, L., Reynart, Mathias, Verboven, F. (2014). Consumer valuation of fuel costs and the 
effectiveness of tax policy: Evidence from the European car market, CEPR Discussion paper no. 
DP10301. 
 
Hawkins, T. R., Sing, B,, Majeau-Betterz, G. and Strømman, A. H. (2012). Comparative 
Environmental Life Cycle Assessment of Conventional and Electric Vehicles, Journal of Industrial 
Ecology, volume 17, Issue 1.   
 
Holtsmark, B. and Skonhoft, A. (2014). The Norwegian support and subsidy policy of electric cars. Should it 
be adopted by other countries?. Environmental Science and Policy. vol. 42. 
 
Innes, R. (1996). Regulating Automobile Pollution under Certainty, Competition, and Imperfect 
Information, Journal of Environmental Economics and Management, 31, 219-239.  
 
Jacobs, Bas, and Ruud A. de Mooij (2015). "Pigou Meets Mirrlees: On the Irrelevance of Tax 
Distortions for the  
 
Reynaert, M., and Sallee, J. M., 2021. "Who Benefits When Firms Game Corrective Policies?" American 
Economic Journal: Economic Policy, 13 (1): 372-412. 
 
Second-Best Pigouvian Tax", Journal of Environmental Economics and Management, 71, 90-108. 
Jaeger, W.K. (2011). The welfare effects of environmental taxation. Environ. Resour. Econ. 49, 101–
119. 
 
Jansen, H., and Denis, C. (1999). A welfare cost assessment of various policy measures to reduce 
pollutant emissions from passenger road vehicles, Transportation Research Part D: Transport and 
Environment, Volume 4, Issue 6, Pages 379–396 
 
Klier, T. and Linn, J. (2015). Using Taxes to Reduce Carbon Dioxide Emissions Rates of New 
Passenger Vehicles: Evidence from France, Germany, and Sweden, American Economic Journal: 
Economic Policy, 7 (1), 212-242.  
 
Lin, C.-Y.C. and Zeng, J. (2014). The Optimal Gasoline Tax for China. Theoretical Economics 
Letters, 4, 270-278. http://dx.doi.org/10.4236/tel.2014.44037 
 
Montag, J. (2015). The simple economics of motor vehicle pollution: A case for fuel tax, Energy 
Policy 85: 138-149.   
 
Sallee, J. M., West, S. E., Fan, W. (2016). Do consumers recognize the value of fuel economy? 
Evidence from used car prices and gasoline price fluctuations, Journal of Public Economics, 135, 61-
73.  
 

http://dx.doi.org/10.1016/j.envsci.2014.06.006
http://dx.doi.org/10.1016/j.envsci.2014.06.006
http://www.environmental-center.com/magazine/elsevier/envsci/
http://www.sciencedirect.com/science/journal/13619209
http://www.sciencedirect.com/science/journal/13619209
http://www.sciencedirect.com/science/journal/13619209/4/6
http://dx.doi.org/10.4236/tel.2014.44037


20 

Sandmo, A. (1976). Direct versus indirect Pigovian taxation, European Economic Review, 7, 337-349.  
 
Shanjun, L., Lang, T., Juanwei, X. and Yiyi, Z. (2017). The market for Electric Vehicles: Indirect 
Network Effects and Policy Design, Journal of The Association of Environmental and Resource 
Economists, Vol. 4, no. 1.  
 
Parry, I. W. H. (2002). Comparing the efficiency of alternative policies for reducing traffic congestion, 
Journal of Public Economics, 85, 333-362.  
 
Parry, I. W. H. and Small, K. A. (2005). Does Britain or the United States Have the Right Gasoline 
Tax?, The American Economic Review, Vol. 95, No 4.  
 
Parry, I. W. H., Walls, M., and Harrington, W. (2007). "Automobile Externalities and Policies." 
Journal of Economic Literature 45, no. 2, 373-99.  
  
 
 

  



21 

Appendix A 
First order equations w.r.t.  

 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 : − 1
𝑐𝑐
𝑢𝑢 �𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓�� −

1
𝑐𝑐
𝑏𝑏𝑚𝑚𝑐𝑐𝑚𝑚 + 𝑁𝑁 + 1

𝑐𝑐
𝑢𝑢 �𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓��+ 1

𝑐𝑐
(𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐,ℎ𝑖𝑖𝑖𝑖ℎ + 𝑝𝑝𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓�)    

−
1
𝑎𝑎
�𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐,𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑝𝑝𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓��+

1
𝑎𝑎
𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓�−

1
𝑎𝑎
𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓� +

1
𝑎𝑎
𝑝𝑝𝑑𝑑𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓� 

−
1
𝑎𝑎
𝑝𝑝𝑑𝑑𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓� = 0 

Note that  𝜕𝜕𝑁𝑁
𝜕𝜕𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐

= 1
−𝑐𝑐

 according to equation (7). If we multiply by −𝑎𝑎, then  

 𝑢𝑢 �𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓��+ 𝑏𝑏𝑚𝑚𝑐𝑐𝑚𝑚 − 𝑎𝑎𝑁𝑁 − 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐,ℎ𝑖𝑖𝑖𝑖ℎ − 𝑝𝑝𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓�−𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓�−𝑝𝑝𝑑𝑑𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓�    

 = 𝑢𝑢 �𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓�� − 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐,𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑝𝑝𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓� − 𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓� − 𝑝𝑝𝑑𝑑𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓�.                                                                                                           

 

First order equations w.r.t. 𝑡𝑡𝑓𝑓: 

𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓� − 𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ(𝑡𝑡𝑓𝑓)
𝑎𝑎

[𝑢𝑢 �𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓��+ 𝑏𝑏𝑚𝑚𝑐𝑐𝑚𝑚 − 𝑎𝑎𝑁𝑁(. ) − 𝑢𝑢 �𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓�� − 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐,ℎ𝑖𝑖𝑖𝑖ℎ 

 −𝑝𝑝𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓� + 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐,𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑝𝑝𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓� − 𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓� + 𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓� 

  −𝑝𝑝𝑑𝑑𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓�+𝑝𝑝𝑑𝑑𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓��+ 𝑁𝑁(. )𝑢𝑢′𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓 − 𝑁𝑁(. )𝑝𝑝𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓  

  −𝑁𝑁(. )𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓 − 𝑁𝑁(. )𝑝𝑝𝑑𝑑𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓 + �𝑁𝑁� − 𝑁𝑁(. )�𝑢𝑢′𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓 − �𝑁𝑁� −

𝑁𝑁(. )�𝑝𝑝𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓 

  −�𝑁𝑁� − 𝑁𝑁(. )�𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓   −�𝑁𝑁� − 𝑁𝑁(. )�𝑝𝑝𝑑𝑑𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓 = 0 . 

 

Note that equation (7) implies that 𝜕𝜕𝑁𝑁
𝜕𝜕𝑡𝑡𝑓𝑓

= 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓�−𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓�
𝑐𝑐

. The first order equation w.r.t 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 

implies that the parameters in the first bracket equal zero. Hence, these conditions imply that  

𝑁𝑁
𝑁𝑁�
𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓

𝑢𝑢′�𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ� +
𝑁𝑁� − 𝑁𝑁
𝑁𝑁�

𝑢𝑢′(𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙) =
𝑁𝑁
𝑁𝑁�
𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓

𝑝𝑝𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ +
𝑁𝑁� − 𝑁𝑁
𝑁𝑁�

𝑝𝑝𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙 

+
𝑁𝑁
𝑁𝑁�
𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓

𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ +
𝑁𝑁� − 𝑁𝑁
𝑁𝑁�

𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙 +
𝑁𝑁
𝑁𝑁�
𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓

𝑝𝑝𝑑𝑑 +
𝑁𝑁� − 𝑁𝑁
𝑁𝑁�

𝑝𝑝𝑑𝑑 

Multiplying equation (3) by 𝑁𝑁
𝑁𝑁�

 and 
𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓

  gives   

𝑁𝑁
𝑁𝑁�
𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓

𝑢𝑢′�𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ� =
𝑁𝑁
𝑁𝑁�
𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓

𝑝𝑝𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ +
𝑁𝑁
𝑁𝑁�
𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓

𝑡𝑡𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ 

Multiplying equation (3) by 𝑁𝑁
�−𝑁𝑁
𝑁𝑁�

 gives   



22 

𝑁𝑁� − 𝑁𝑁
𝑁𝑁�

𝑢𝑢′(𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙) =
𝑁𝑁� − 𝑁𝑁
𝑁𝑁�

𝑝𝑝𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙 +
𝑁𝑁� − 𝑁𝑁
𝑁𝑁�

𝑡𝑡𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙 

Summing these equations:  

𝑁𝑁
𝑁𝑁�
𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓

𝑢𝑢′�𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ� +
𝑁𝑁� − 𝑁𝑁
𝑁𝑁�

𝑢𝑢′(𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙) =
𝑁𝑁
𝑁𝑁�
𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓

𝑝𝑝𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ +
𝑁𝑁� − 𝑁𝑁
𝑁𝑁�

𝑝𝑝𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙 

+
𝑁𝑁
𝑁𝑁�
𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓

𝑡𝑡𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ +
𝑁𝑁� − 𝑁𝑁
𝑁𝑁�

𝑡𝑡𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙 

The first order conditions w.r.t. 𝑡𝑡𝑓𝑓 and 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐, and this equation imply that    

𝑁𝑁
𝑁𝑁�
𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓

𝑡𝑡𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ +
𝑁𝑁� − 𝑁𝑁
𝑁𝑁�

𝑡𝑡𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙 =
𝑁𝑁
𝑁𝑁�
𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓

𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ +
𝑁𝑁� − 𝑁𝑁
𝑁𝑁�

𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙 

+
𝑁𝑁
𝑁𝑁�
𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓

𝑝𝑝𝑑𝑑 +
𝑁𝑁� − 𝑁𝑁
𝑁𝑁�

𝑝𝑝𝑑𝑑 

Hence,  

𝑡𝑡𝑓𝑓∗ = 𝑝𝑝𝐶𝐶𝐶𝐶2 +
�𝑁𝑁𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓 + (𝑁𝑁� − 𝑁𝑁)𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓� 𝑝𝑝𝑑𝑑

𝑁𝑁𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ + (𝑁𝑁� − 𝑁𝑁)𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙
 

Substituting 𝑡𝑡𝑓𝑓∗ in equation (7) gives    

 𝑢𝑢 �𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓∗�� + 𝑏𝑏𝑚𝑚𝑐𝑐𝑚𝑚 − 𝑎𝑎𝑁𝑁 − 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐,ℎ𝑖𝑖𝑖𝑖ℎ − 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑝𝑝𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓∗�   

 −𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓∗� −
�𝑁𝑁𝑁𝑁�

𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓

+𝑁𝑁
�−𝑁𝑁
𝑁𝑁� �𝑝𝑝𝑑𝑑𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ

𝑁𝑁
𝑁𝑁�

𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓

𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ+
𝑁𝑁�−𝑁𝑁
𝑁𝑁� 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙

𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓∗� 

 = 𝑢𝑢 �𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓∗�� − 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐,𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑝𝑝𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓∗� 

 −𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓∗� −
�𝑁𝑁𝑁𝑁�

𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓

+𝑁𝑁
�−𝑁𝑁
𝑁𝑁� �𝑝𝑝𝑑𝑑𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙

𝑁𝑁
𝑁𝑁�

𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓

𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ+
𝑁𝑁�−𝑁𝑁
𝑁𝑁� 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙

𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓∗� 

Hence,  

𝑢𝑢 �𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓∗�� + 𝑏𝑏𝑚𝑚𝑐𝑐𝑚𝑚 − 𝑎𝑎𝑁𝑁 − 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐,ℎ𝑖𝑖𝑖𝑖ℎ − 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑝𝑝𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓∗� 

−𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓∗�  − 𝑝𝑝𝑑𝑑𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓∗� −
�𝑁𝑁
� − 𝑁𝑁
𝑁𝑁� � �𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ − 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙�

𝑁𝑁
𝑁𝑁�
𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓

𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ + 𝑁𝑁� −𝑁𝑁
𝑁𝑁� 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙

𝑝𝑝𝑑𝑑𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓∗� 

= 𝑢𝑢 �𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓∗�� − 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐,𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑝𝑝𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓∗� 
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−𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓∗� − 𝑝𝑝𝑑𝑑𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓∗� −
�𝑁𝑁𝑁𝑁��

𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓

�𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ�

𝑁𝑁
𝑁𝑁�
𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓

𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ + 𝑁𝑁� −𝑁𝑁
𝑁𝑁� 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙

𝑝𝑝𝑑𝑑𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓∗� 

Implementing first order conditions v.r.t. 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 gives   

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐∗ =
𝑁𝑁� − 𝑁𝑁
𝑁𝑁� �𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ�

𝑁𝑁
𝑁𝑁�  
𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓

𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ + 𝑁𝑁� − 𝑁𝑁
𝑁𝑁� 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙

𝑝𝑝𝑑𝑑𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓∗� +

𝑁𝑁
𝑁𝑁�  
𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓

�𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ�

𝑁𝑁
𝑁𝑁�  
𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ`𝑡𝑡𝑓𝑓
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙`𝑡𝑡𝑓𝑓

𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ + 𝑁𝑁� −𝑁𝑁
𝑁𝑁� 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙

𝑝𝑝𝑑𝑑𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓∗� 

Both expressions on the right-hand side are negative. This proves that ∗
cart is negative.  

First order equations w.r.t. 𝑝𝑝𝐶𝐶𝐶𝐶2: 

𝑆𝑆𝐶𝐶𝐶𝐶2 =  𝑁𝑁𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓� + (𝑁𝑁� − 𝑁𝑁)𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓� 
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Appendix B 
Second order conditions for the government maximization problem, equation (13). First order 

conditions solve the maximization problem if the Lagrangian is concave. Hence,   

𝜕𝜕2𝐿𝐿
𝜕𝜕𝑡𝑡𝑓𝑓𝜕𝜕𝑡𝑡𝑓𝑓

=
𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓� − 𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓�

𝑎𝑎
�−𝑎𝑎 �

𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓� − 𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓�
𝑎𝑎

� 

+𝑢𝑢′𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓 − 𝑝𝑝𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓 − 𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓 − 𝑝𝑝𝑑𝑑𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓  

−𝑢𝑢′𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓 + 𝑝𝑝𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓 + 𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓   +𝑝𝑝𝑑𝑑𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓� 

+
𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓� − 𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓�

𝑎𝑎 �𝑢𝑢′𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓 − 𝑝𝑝𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓 − 𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓 

−𝑝𝑝𝑑𝑑𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓 − 𝑢𝑢′𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓 + 𝑝𝑝𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓 + 𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓 +𝑝𝑝𝑑𝑑𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓� 

+𝑁𝑁(𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐) �𝑢𝑢′𝑚𝑚′𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓 + 𝑢𝑢′𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓′𝑡𝑡𝑓𝑓 − 𝑝𝑝𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓′𝑡𝑡𝑓𝑓

− 𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓′𝑡𝑡𝑓𝑓 

−𝑝𝑝𝑑𝑑𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓′𝑡𝑡𝑓𝑓 − 𝑢𝑢′𝑚𝑚′𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓 − 𝑢𝑢′𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓′𝑡𝑡𝑓𝑓 + 𝑝𝑝𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓′𝑡𝑡𝑓𝑓 + 𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓′𝑡𝑡𝑓𝑓  

+𝑝𝑝𝑑𝑑𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓′𝑡𝑡𝑓𝑓� + 𝑁𝑁� �𝑢𝑢′𝑚𝑚′𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓 + 𝑢𝑢′𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓′𝑡𝑡𝑓𝑓 − 𝑝𝑝𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓′𝑡𝑡𝑓𝑓

− 𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓′𝑡𝑡𝑓𝑓 

−𝑝𝑝𝑑𝑑𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓′𝑡𝑡𝑓𝑓� < 0 

𝜕𝜕2𝑊𝑊
𝜕𝜕𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝜕𝜕𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐

= 1
−𝑐𝑐

< 0  

𝜕𝜕2𝐿𝐿
𝜕𝜕𝑡𝑡𝑓𝑓𝜕𝜕𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐

=
𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙�𝑡𝑡𝑓𝑓� − 𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑓𝑓�

𝑎𝑎

−
1
𝑎𝑎 �
𝑢𝑢′𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓 − 𝑝𝑝𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓 − 𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓 

−𝑝𝑝𝑑𝑑𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓 − 𝑢𝑢′𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓 + 𝑝𝑝𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓 + 𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓 +𝑝𝑝𝑑𝑑𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓� 

The second order condition is satisfied if 

𝜕𝜕2𝐿𝐿
𝜕𝜕𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝜕𝜕𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐

< 0 and 𝜕𝜕2𝐿𝐿
𝜕𝜕𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝜕𝜕𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐

𝜕𝜕2𝐿𝐿
𝜕𝜕𝑡𝑡𝑓𝑓𝜕𝜕𝑡𝑡𝑓𝑓

− � 𝜕𝜕2𝐿𝐿
𝜕𝜕𝑡𝑡𝑓𝑓𝜕𝜕𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐

�
2

> 0  

The first inequality condition is satisfied if 𝑎𝑎 > 0.  

The second inequality condition is satisfied when  

−
1
𝑎𝑎
𝑁𝑁(𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐) �𝑢𝑢′𝑚𝑚′𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓 + 𝑢𝑢′𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓′𝑡𝑡𝑓𝑓 − 𝑝𝑝𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓′𝑡𝑡𝑓𝑓

− 𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓′𝑡𝑡𝑓𝑓 

−𝑝𝑝𝑑𝑑𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓′𝑡𝑡𝑓𝑓 − 𝑢𝑢′𝑚𝑚′𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓 − 𝑢𝑢′𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓′𝑡𝑡𝑓𝑓 + 𝑝𝑝𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓′𝑡𝑡𝑓𝑓 



25 

+𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓′𝑡𝑡𝑓𝑓 +𝑝𝑝𝑑𝑑𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓′𝑡𝑡𝑓𝑓� −
1
𝑎𝑎2 �

𝑢𝑢′𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓 − 𝑝𝑝𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓 − 𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓 

−𝑝𝑝𝑑𝑑𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ′𝑡𝑡𝑓𝑓 − 𝑢𝑢′𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓 + 𝑝𝑝𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓 + 𝑝𝑝𝐶𝐶𝐶𝐶2𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓 +𝑝𝑝𝑑𝑑𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙′𝑡𝑡𝑓𝑓�
2

> 0 

Parameter values and functional forms are restricted to those that satisfy this condition. 
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