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ABSTRACT

Data used in social, behavioural, health or biological sciences may have a hierarchical structure
due to the population of interest or the sampling design. Multilevel or marginal models are often
used to analyse such hierarchical data. These data are often selected with unequal probabilities
from a clustered and stratified population. An empirical likelihood approach for the regression
parameters of a multilevel model is proposed. It has the advantage of taking into account of
the sampling design. This approach can be used for point estimation, hypothesis testing and
confidence intervals for the sub-vector of parameters. It provides asymptotically valid inference
for small and large sampling fraction. The simulation study shows the advantages of the em-
pirical likelihood approach over alternative parametric approaches. The approach proposed is
illustrated using the Programme for International Student Assessment (PISA) survey data.

1. Introduction
Multilevel (Goldstein, 1986) or marginal models (Diggle, Heagerty, Liang and Zeger, 2002) are often used to

analyse hierarchical data. Sample data are often selected from multi-stage sampling designs involving unequal proba-
bilities at the first stage of the selection. Ignoring the selection probabilities may result in invalid inference, when these
probabilities are associated with the model outcome variable after conditioning on the model covariates (Pfeffermann,
Skinner, Holmes, Goldstein and Rasbash, 1998).

With single level regression models, sampling weights can be taken into account by using the pseudo-likelihood
approach (Binder, 1983; Binder and Patak, 1994; Skinner, 1989), where the population is fixed and the observations
are assumed independent. It is not straightforward to implement this approach with multilevel models, because the
observations within higher levels of the hierarchy are not marginally independent. In this case, population totals cannot
be written as a single summation of the individual units (Grilli and Pratesi, 2004).

Pfeffermann et al. (1998) proposed a weighted iterative generalised least squares (WIGLS) algorithm to estimate
multilevel regression parameters under two-stage sampling design. This procedure can be computationally intensive
(Kovačević and Rai, 2003). A weighted multilevel pseudo-likelihood approach was proposed by Asparouhov (2006)
and Rabe-Hesketh and Skrondal (2006). Their point estimator is approximately unbiased if the within cluster sample
sizes are large enough, which is may not be the case in practice. Skinner and Vieira (2007) proposed a weighted
generalised estimating equation (WGEE) approach, by incorporating the sampling weights into generalised estimating
equation (Liang and Zeger, 1986). Skinner and Vieira (2007, p.5) noticed that the WIGLS estimator and the WGEE
estimator are almost identical under a working uniform correlation structure.

Rao, Verret and Hidiroglou (2013) proposed a weighted composite likelihood, which can be used for point es-
timation of two-level models. Design-based estimators are obtained by solving sample composite score equations,
based upon the weighted pairwise composite likelihood function. The estimators are both design and model consis-
tent. This approach is asymptotically valid even when the cluster sample sizes are small, unlike weighted multilevel
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Empirical likelihood and multilevel data

pseudo-likelihood (Asparouhov, 2006; Rabe-Hesketh and Skrondal, 2006). However, joint inclusion probabilities have
to be known for point estimation with weighted composite likelihood. The approach proposed does not rely on joint
inclusion probabilities

Pfeffermann, Moura and Silva (2006) and Kim, Park and Lee (2017) proposed fully parametric approaches. These
approaches are based on parametric assumption which are not needed under the approach proposed. Kim et al. (2017)
considered an expectation-maximisation (EM) algorithm based on the assumption that distribution of the estimator of
the random effect is approximately normal. Pfeffermann et al.’s (2006) approach is based on a model holding for the
sample data in terms of the population model and the selection probabilities for each stage of the sample selection.
The sample model is fitted by using MCMC. The validity of this method depends on the sample model being correctly
specified. It is well known that parametric approaches may perform badly when the model assumptions they are based
upon are not met. The primary focus is on non-parametric (design-based) approaches. A semi-parametric (model-
design-based) approach is also considered in §6.

Under a design-based approach (Neyman, 1938), the sampling distribution is specified by the sampling design.
Population-level information can be accommodated within the approach proposed. The design-consistent point esti-
mator proposed is the solution to generalised estimating equation (see §3). Consider the empirical likelihood confi-
dence intervals based on a pivotal empirical log-likelihood ratio function. These intervals do not rely on re-sampling,
linearisation, variance estimation or design effect. These are key advantages over alternative approaches. For example,
the pseudoempirical log-likelihood ratio function is not pivotal and needs to be adjusted by design effects based on
variance estimates. Tan and Wu’s (2015) empirical log-likelihood ratio function is only pivotal when the parameter of
interest is unidimensional.

Consider a multidimensional parameter of multilevel regression models. Profiling consists in maximising the em-
pirical likelihood function over the parameters which are not of interest. The resulting profile empirical log-likelihood
ratio function is pivotal, which allows constructing confidence intervals for each components of the parameter and
testing the significance of sub-parameters. The pseudoempirical likelihood approaches and Tan and Wu’s (2015) ap-
proach are limited to the unidimensional case, and there is no extension for the multidimensional case. There is no
general multidimensional theory on profiling for the pseudoempirical likelihood likelihood approach. Profiling is the
the key property of the approach proposed for multilevel and marginal regression model parameters. A comparison of
empirical likelihood and pseudoempirical likelihood can be found in Berger (2018b,c).

Like bootstrap, the approach proposed does not require variance estimation, design effects and linearisation. Boot-
strap can be very computationally intensive for hierarchical data, because many replicates may be needed for bootstrap
confidence intervals. Furthermore, bootstrap relies on small sampling fractions, which is not required with the ap-
proach proposed (see §6). It is also less computer intensive than the bootstrap. The theoretical properties of bootstrap
under complex sampling are often conjectured, only supported by simulation studies or limited to simple random sam-
pling. The properties of the approach proposed has the advantage of being based on an asymptotic framework. It also
allows for large sampling fractions.

It is assumed that the model and the design have the same hierarchical structure; that is, the model and design
clusters do not overlap. This is a standard assumption made by Pfeffermann et al. (1998); Skinner and Vieira (2007)
and Rao et al. (2013). The empirical likelihood function is defined at primary sampling units (PSUs) level. The PSU-
level sampling fraction can negligible or large.

Standard confidence intervals of estimators based on estimating equations, often rely on linearised sandwich vari-
ance estimator (e.g. Binder, 1983; Kovačević and Rai, 2003; Pfeffermann et al., 1998; Rao et al., 2013; Skinner and
Vieira, 2007) or bootstrap (Grilli and Pratesi, 2004). Standard confidence intervals may have poor coverages, when
the variance estimators are biased or unstable. This may be the case when the sample size is not large enough or with
outlying values. Even under normality, heteroskedasticity may affect the coverage of standard confidence intervals
(Owen, 1991).

In §2, two-stage sampling designs and population-level information are introduced. In §3, the multilevel model
considered and the parameter of interest are defined. In §4, the WGEE point estimator is defined. In §5, the empirical
likelihood approach proposed is described. An extension for large sampling fractions can be found in §6. In §7, the
performance of the empirical likelihood confidence interval is compared with alternative parametric approaches. In §8,
the approach proposed is applied to the Programme for International Student Assessment (PISA) survey data (OECD,
2006).
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2. Two-stage sampling design and population-level information
Let U be a finite population comprised ofN disjoint finite primary sampling units (PSUs) Ui of sizes Ki, with i =

1,… , N . Suppose that U is stratified into a finite numberH of strata denoted by U1,… , UH , such that ∪Hℎ=1Uℎ = U
and ΣHℎ=1Nℎ = N , where Nℎ denotes the number of PSUs within Uℎ. Let Sℎ be the sample of Ui, selected without
replacement with unequal probabilities �i from Uℎ. Let nℎ denote the sample size of Uℎ. The overall sample of
PSUs is S = ∪Hℎ=1Sℎ. Let Si be the sample of secondary sampling units (SSUs), of size ki selected with conditional
probabilities �j∣i within the ith PSU selected at the first stage, with j = 1,… , ki. Let Ki denote the size of Ui. Let vij
be the vector of variables associated with unit j ∈ Ui.

Consider some known population parameter'N which is the solution to the estimating equation (Chaudhuri, Hand-
cock and Rendall, 2008)

∑

i∈U

∑

j∈Ui

f(', vij) = 0⋅ (1)

For example, 'N could be a vector of means, ratios or quantiles. The vector 'N will be treated as a vector of constants,
not as a parameter to estimate. For simplicity, f('N , vij) is replaced by fij in what follows. The fij are often called
auxiliary information in the sampling literature.

The asymptotic framework considered is based on an infinite nested sequence of sampling designs, a sequence of
finite populations and an associated sequence of samples (Isaki and Fuller, 1982). Assume that n→ ∞, where n is the
number of PSUs sampled. The sizes Ki are assumed asymptotically bounded. Thus, ki is finite, unlike the weighted
multilevel pseudo-likelihood approach (Asparouhov, 2006; Rabe-Hesketh and Skrondal, 2006). The number of strata
H , nℎ∕n and Nℎ∕N are fixed constants that do not vary as n → ∞. The sampling fraction n∕N can be negligible or
large. The extension to large sampling fractions can be found in §6.

3. Multilevel model
Let yij be the values of a variable of interest and xij be the vector of values of b explanatory variables. The variables

yij and xij are associated with the jth unit within the ith cluster, where j = 1,… , Ki and i = 1,… , N . The variables
yij and xij are considered to be part of a vector vij ; that is, vij = (yij ,x⊤ij ,…)

⊤. Consider the multilevel model

yij = x⊤ijB + �ij , where �ij ∶= ui + eij ⋅ (2)

Here, ui and the eij are independent random variables with means zero and variances �2u and �2e respectively. The
response variables yij are conditionally independent given the random effects ui and marginally correlated within
cluster i. This implies that the variance of �i = (�i1,… , �iKi )

⊤, with respect to (2), is

�i = �2e IKi + �
2
u 1Ki1

⊤
Ki
,

where IKi is the Ki ×Ki identity matrix and 1Ki is the Ki × 1 vector of ones. The approach proposed can be extended
to more complex multilevel models with random slopes and/or complex correlation structures. For simplicity and
without loss of generality, the focus will be upon the model (2).

Let the finite population parameter �N be the generalised least square predictor of B. The parameter �N is the
solution to the population generalised estimating equation (Liang and Zeger, 1986)

G(�) ∶=
∑

i∈U
gi(�) = 0b, (3)

where

gi(�) ∶= X⊤i �
−1
i (yi −Xi�),

yi ∶= (yi1,… , yiKi )
⊤,

Xi ∶= (x(1)i ⋅ ,⋯ ,x(b)i ⋅ ),

x(l)i ⋅ ∶= (x(l)i1 ,⋯ , x(l)iKi )
⊤⋅
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Here, 0b is a b-vector of zeros, where b denotes the number of covariates. Under a set of regularity conditions given by
Liang and Zeger (1986), �N is a consistent predictor of B. The covariance structure �i within gi(�) does not affect the
consistency but only the efficiency (Diggle et al., 2002; Liang and Zeger, 1986). The estimating equation (3) would
need to be changed to accommodate random slopes and/or complex correlation structures. The empirical likelihood
approach proposed would still be valid in this case.

In §4 and 5, �N is treated as the parameter of interest. Hence a design-based inference for �N is considerd, where
the sampling distribution is only specified by the sampling design. Under this framework, yij and xij are treated as
fixed, non-random constant vectors; that is, the sampling distribution is conditional on yij and xij . In §6, a model-
design-based inference is used, where yij and xij are random and B is the parameter of interest.

4. Sample weighted generalised estimating equations
Skinner and Vieira (2007) proposed an estimator �̂ defined as the solution to the sample weighted generalised

estimating equation (WGEE)
∑

i∈S
�−1i ĝi(�) = 0b, (4)

where

ĝi(�) ∶= X̂⊤i �̂
−1
i
(

ŷi − X̂i�
)

⋅ (5)

The quantities ŷi and X̂i are the sub-matrices of yi andXi, which contains the observations of the sample Si. Consider
the following estimator of �−1i (Rao and Molina, 2015).

�̂
−1
i ∶= �̂−2e

{

diag(wj∣i ∶ j ∈ Si) − ̂iw−1i⋅ (ŵi ŵ
⊤
i )
}

,

with

wj∣i ∶= (�j∣i ai)−1,
ŵi ∶= vector(wj∣i ∶ j ∈ Si),

̂i ∶= �̂2u
(

�̂2u + �̂
2
ew

−1
i⋅
)−1, (6)

wi⋅ ∶=
∑

j∈Si

wj∣i,

where �̂2e and �̂
2
u are sample based estimators of �2e and �

2
u . These estimators are given inAppendixA in the supplement.

Here, ai are Potthoff, Woodbury and Manton’s (1992) scaling factors,

ai =
∑

j∈Si

�−2j∣i

(

∑

j∈Si

�−1j∣i

)−1
, (7)

which are called “scaling factors 1” by Pfeffermann et al. (1998).
The design-consistency of �̂ can be established by using a Taylor expansion of (4) and assuming the following key

assumption (e.g. Godambe and Thompson, 2009; Berger, 2018a).

N−1
∑

i∈S
�−1i ĝi(�N ) = O (n

− 12 ), (8)

where O (⋅) denotes the order of convergence in probability with respect to the sampling design.
If ai = 1 instead of (7) and if ̂i is given by (6), �̂ reduces to You and Rao (2002, p.435) estimator. When ai = 1

and ̂i = 0, it reduces to the weighted composite likelihood estimator proposed by Rao et al. (2013), or the probability
weighted least squares estimator (Pfeffermann et al., 1998). Under themodel (2), �̂ is also theWIGLS estimator (Skinner
and Vieira, 2007, p.5).

Poor estimation of the variance components �2u and �2e may result in some loss in efficiency of �̂. Pfeffermann
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et al. (1998, p.29) showed that �̂ is design-consistent, as n → ∞, when �2e and �2u are used within (6) instead of �̂2u
and �̂2e given in Appendix A in the supplement. However, �2e and �2u are rarely known and the bias of �̂2u and �̂2e
may be high if the cluster sample sizes ki are small. Scaling factors ai may reduce the bias of �̂2u and �̂

2
e when ki are

small (Pfeffermann et al., 1998). Several scaling factors have been proposed in the literature (e.g. Asparouhov, 2006;
Clogg and Eliason, 1987; Graubard and Korn, 1996; Longford, 1995; Pfeffermann et al., 1998; Potthoff et al., 1992).
However, there is no theoretical evidence supporting which scaling factor is better. Asparouhov (2006) compared the
empirical biases of �̂2u and �̂2e for different scaling factors. In Appendix A in the supplement, several estimators are
compared empirically. Pfeffermann et al. (1998, p.29) showed that the consistency of �̂ is achieved provided that the
number of clusters n is large and the scaling factors ai are independent from yij .

5. Methodology proposed
5.1. Empirical likelihood approach

Several empirical likelihood approaches can be found in the literature (Chaudhuri et al., 2008; Chen and Sitter,
1999; Chen and Kim, 2014; Kim, 2009; Owen, 1988, 2001; Wu and Rao, 2006). Berger’s (2018a) approach is used,
because it allows profiling and complex sampling. It will be shown how it can be extended for multilevel models. The
PSU-level empirical log-likelihood function is given by

l(p) ∶=
∑

i∈S
log pi, (9)

where the pi are unknown empirical likelihood probabilities allocated to the PSUs i ∈ s and p denotes the n × 1 vector
of pi.

Let p̂ ∗i (�) maximize l(p) subject to the constraints pi > 0 and

n
∑

i∈S
pi �

−1
i c∗i(�) = C

∗, (10)

for a given �, with

c∗i(�) ∶= {c
⊤
i , ĝi(�)

⊤}⊤ and C∗ ∶= (C⊤, 0⊤)⊤, (11)

ci ∶= (z⊤i , f̂
⊤
i )

⊤ and C ∶= (n⊤H , 0
⊤)⊤, (12)

zi ∶= (zi1,… , ziH )⊤ and nH ∶=
∑

i∈Uzi = (n1,… , nH )⊤, (13)

f̂i ∶=
∑

j∈Si

�−1j∣i fij ,

where ziℎ = �i for i ∈ Uℎ and ziℎ = 0 otherwise. Here, ĝi(�) is defined by (5) and fij ∶= f('N , vij) defined in §2.
Assume that the C∗ is an inner point of the conical hull formed by n

∑

i∈S pi�
−1
i c

∗
i(�), with � within the parameter

space. Hence, the set of p̂ ∗i (�) is unique.
Note that (10) implies the stratification constraint
∑

i∈S

pi
�i
zi =

nH
n
, (14)

which is not motivated by moment conditions. This constraint implies
∑

i∈S pi = 1, since 1
⊤
Hzi = �i and 1

⊤
HnH = n.

Hence, (14) can be viewed as a generalisation for stratification of Owen’s (1988) leading constraint
∑

i∈S pi = 1. The
main difference between this §’s approach and the standard empirical likelihood approach (Owen, 1988) is the �−1i
within the constraint (10) and the use of the stratification constraint (14) instead of

∑

i∈S pi = 1. Constraints weighted
by �−1i can also be found in Berger and Torres (2012, 2014, 2016), Chen and Kim (2014), Oǧuz-Alper and Berger
(2016) and Berger (2018a). Note that (9) is a PSU-level function.

The maximum value of l(p) under pi > 0 and (10) is given by

l(�) =
∑

i∈S
log p̂ ∗i (�)⋅ (15)

O�guz-Alper and Berger: Preprint submitted to Elsevier Page 5 of 18



Empirical likelihood and multilevel data

The function l(�) is not a parametric likelihood, but it behaves like a likelihood. It takes into account the sampling
design and the population-level information, because zi and f̂i are included within c∗i(�).

In Berger and Torres (2016) andOǧuz-Alper andBerger (2016), the empirical log-likelihood function is parametrized
with mi ∶= npi�−1i . By replacing pi by n−1mi�i within (9) and (10), (15) reduces to Berger and Torres’s (2016) em-
pirical log-likelihood function plus a quantity which does not depend on � and mi. This dual parametrization in term
of mi is equivalent.

The maximum empirical likelihood estimator �̂EL of �N is the vector that maximizes expression (15). This esti-
mator is also the solution to the following sample estimating equation (Berger and Torres, 2016)

Ĝ(�) ∶=
∑

i∈S
m̂i ĝi(�) = 0b, (16)

where

m̂i ∶= n p̂i �−1i ,

are the empirical likelihood weights, with

p̂i ∶= n−1
(

1 + �⊤ci�−1i
)−1

⋅ (17)

The vector � is such that m̂i > 0 and
∑

i∈S
m̂i ci = C , (18)

holds. Expression (17) is obtained from (B.9) in the supplement, by using ci instead of c∗i(�) (see §B.2 in Appendix B
of the supplement). A modified Newton-Raphson algorithm as in Chen, Sitter and Wu (2002) can be used to compute
�. It can be shown that �̂EL is

√

n-design-consistent under (8).
The m̂i play the role of survey weights. They are always positive and calibrated because

∑

i∈S m̂i f̂i = 0 and (1)
holds. The p̂i are similar to the so-called g-weights in Särndal, Swensson and Wretman (1992, p.232) or calibration
factors in Deville and Särndal (1992). The calibration property is the consequence of the maximisation of (15) and
the fact that 'N is constant. In survey sampling literature, calibration is viewed as a weighting procedure, rather than
the consequence of a likelihood principle.

The quantities m̂i satisfy
∑

i∈S m̂izi = nH , which specifies that nℎ observations selected with unequal probabilities
within each stratum. Without population-level information, ci = zi, � = 0 and m̂i = �−1i , the standard Horvitz and
Thompson’s (1952) weight. In this case, �̂EL is the WGEE estimator �̂; which is the solution to (4).

5.2. Tests and confidence intervals
Suppose that the parameter of interest �N is a p-sub-parameter of �N ; that is, �N = (�⊤N , �

⊤
N )
⊤. In order to make

inference about �N , the following profile empirical log-likelihood ratio function is used.

r̂(�) = 2
{

l(�̂) − max
�∈�

l(�, �)
}

,

where l(�, �) = l(�) with � = (�⊤, �⊤)⊤ and l(�̂) =
∑

i∈s log m̂i, where the m̂i are defined by (17). The symbol �
denotes the parameter space of �N . The quantity max�∈� l(�, �) is given by

max
�∈�

l(�, �) = −
∑

i∈S
log

[

�i+
∗�⊤ c∗i {�,

◦�(�)}
]

+
∑

i∈S
log(�in−1),

where c∗i {�,
◦�(�)} is given by (11), with � = {�⊤, ◦�(�)⊤}⊤. The vector ∗� and ◦�(�) are the solutions to

�1(�, �) ∶=
∑

i∈S

{

�i+
∗�⊤ c∗i(�)

}−1c∗i(�) − C
∗ = 0, (19)

�2{
∗�, ◦�(�)} ∶= n ∗�⊤

∑

i∈S
p̂ ∗i (�)�

−1
i
)c∗i(�)

) ◦�(�)
= 0⋅ (20)
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These solutions can be found by using a modified Newton-Raphson algorithm (Oǧuz-Alper and Berger, 2016, Ap-
pendix A).

Theorem 1 shows that r̂(�N ) is asymptotically pivotal and can be used for testing hypotheses. Confidence intervals
can be constructed based on (21), when �N is scalar.

Theorem 1. Under the regularity conditions (8), (B.2)–(B.6) and (B.8), given in Appendix B of the supplement,

r̂(�N )
d
←←←←←←←→ �2df=p, (21)

in distribution with respect to the design, when n∕N → 0. The constant p is the dimension of �N .

In §6, this theorem is generalised to allow n∕N ̸→ 0. The proof of Theorem 1 can be found in Appendix B in
the supplement. This proof is not based on the assumption that non-random quantities �2u and �2e are used within
(6). However, condition (8) is required. In practice, the ki are usually moderate sizes. Theorem 1 holds in this
case, because the Ki are assumed asymptotically bounded. This is an advantage over the weighted multilevel pseudo-
likelihood approach (Asparouhov, 2006; Rabe-Hesketh and Skrondal, 2006) which is based on the assumption that the
ki are large.

6. Large sampling fractions
In this §, Theorem 1 is generalised for large sampling fraction (n∕N ̸→ 0). In other words, the empirical log-

likelihood ratio function still converges to a �2-distribution, when the sampling fractions are large. It will not be
necessary to adjust the empirical log-likelihood ratio function with eigenvalues as in Berger (2018a); Rao and Scott
(1981) and Zhao and Wu (2018) or with design effect as in Wu and Rao (2006) or with finite population corrections
as in Berger and Torres (2016). The simulation study in §7.2 supports out findings. The empirical likelihood point
estimator is also model-design consistent.

In §4 and 5, �N is the target parameter because the model-variance of �N − B is negligible when n∕N is small.
However, with large sampling fractions this model-variancemay not be negligible compared to the design-variance. By
considering B as the target rather than �N , the empirical log-likelihood ratio function implicitly incorporates Hájek’s
(1964) approximation of the joint inclusion probabilities and a model variance.

Assume that the regularity conditions (B.2)–(B.6) in the supplement, hold after replacing �N by B. Let B =
(#⊤, �⊤)⊤, where the p-vector # is the parameter of interest and � the remaining parameters. Let r̂(#) = 2{l(�̂) −
max�∈� l(#, �)}. The proof in Appendix B can be used to show that

r̂(#) = 1
N2

Ĝreg(B)⊤(I − Â∙)Ṽ
−1
Ĝreg(B) + O (n

− 12 ),

where Ĝreg(B) is regression-type estimator given by

Ĝreg(B) ∶= Ĝ�(B) − 	̂(B)⊤ f̂� , (22)

with

Ĝ�(B) ∶=
∑

i∈S

ĝi(B)
�i

, f̂� ∶=
∑

i∈S

f̂i
�i
,

	̂(B) ∶= ̂var(f̂�)−1 ̂cov{f̂� , Ĝ�(B)},

̂var(f̂�) ∶=
∑

i∈S

f̂i f̂⊤i
�2i

−
∑

i∈S

f̂i z⊤i
�2i

(

∑

i∈S

zi z⊤i
�2i

)−1
∑

i∈S

zi f̂⊤i
�2i

,

̂cov{f̂� , Ĝ�(B)} ∶=
∑

i∈S

f̂i ĝi(B)⊤

�2i
−
∑

i∈S

f̂i z⊤i
�2i

(

∑

i∈S

zi z⊤i
�2i

)−1
∑

i∈S

zi ĝi(B)⊤

�2i
⋅
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The matrix Â∙ is symmetric, idempotent and defined by

Â∙ ∶= Ṽ
− 12 (̂

∙
g

(

(̂
∙⊤
g Ṽ

−1(̂
∙
g

)−1
(̂
∙⊤
g Ṽ

− 12 , (23)

where

(̂
∙
g ∶=

∑

i∈S
�−1i

) ĝ◦i (B)
)�

and ĝ◦i (B) ∶= ĝi(B) − 	̂(B)
⊤ f̂i,

Ṽ ∶= 1
N2

∑

i∈S

1
�2i
ĝ◦i (B) ĝ

◦
i (B)

⊤ − 1
N2

Ĝ
◦
(B)⊤Z−1Ĝ

◦
(B),

Ĝ
◦
(B) ∶=

∑

i∈S

1
�2i
zi ĝ

◦
i (B)

⊤ and Z ∶=
∑

i∈S

1
�2i
zi z⊤i = diag(nH )⋅

The vectors zi and nH are defined by (13).
The matrix Ṽ is the usual Hansen and Hurwitz’s (1943) stratified variance estimator, considered under negligible

sampling fraction. In the rest of this §, it is shown that Ṽ is also a consistent variance estimator of the model-design
variance ofN−1Ĝreg(B), given by

V ∶= EmVd
{

N−1Ĝreg(B)
}

+ VmEd
{

N−1Ĝreg(B)
}

, (24)

where Ed and Vd are the expectation and variance with respect to the two-stage design. The operators Em and Vm
represent the model expectation and variance under (2). The consistency of Ṽ may seem counter-intuitive, but can be
explained by the fact that Ṽ over-estimates the design variance Vd{N−1Ĝreg(B)} by an amount which estimates the
second term of (24), as shown in the following lemma.

Lemma 1. Under
1
N

‖

‖

‖

∑

i∈s

1
�i
c∗i (B) − C

∗‖
‖

‖

= O (n
− 12 ), (25)

the matrix Ṽ can be decomposed as

Ṽ = V̂d + V̂m + O (n−2), (26)

where

V̂d ∶=
1
N2

∑

i∈S

1 − �i
�2i

ĝ◦i (B) ĝ
◦
i (B)

⊤ − 1
N2

Ĝ
◦
c (B)

⊤Ẑ
−1
c Ĝ

◦
c (B), (27)

V̂m ∶=
1
N2

∑

i∈S

1
�i
ĝ◦i (B) ĝ

◦
i (B)

⊤,

Ĝ
◦
c (B) ∶=

∑

i∈S

1 − �i
�2i

zi ĝ
◦
i (B)

⊤ and Ẑc ∶=
∑

i∈S

1 − �i
�2i

zi z⊤i ⋅

Furthermore,

1
N2

Ĝ
◦
c (B)

⊤Ẑ
−1
c Ĝ

◦
c (B) = O (n−2)⋅ (28)

The proof of Lemma 1 can be found in Appendix B of the supplement. The condition (25) is the law of large
numbers which can be justified by using the Isaki and Fuller’s (1982) sufficient conditions. Note that conditions (B.2)
and (B.6) in the supplement imply V̂d = O (n−1) and V̂m = O (N−1); that is, V̂m is not asymptotically negligible
when n∕N is large.

The matrix (27) is Hájek’s (1981) stratified design-based estimator which implicitly includes Hájek’s (1964) ap-
proximation of the joint inclusion probabilities which are often considered in the literature (Aires, 2000; Berger, 1998;
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Deville, 1999; Fuller, 2009; Haziza, Mecatti and Rao, 2004; Matei and Tillé, 2005). The quantities 1−�i are PSU-level
finite population corrections, which reduces to 1 − n∕N under equal probability sampling of PSUs.

The key results is to show that Ṽ is indeed an unbiased estimator of V . Following Hájek’s (1964) asymptotic
framework, based on

∑

i∈U �i(1 − �i)→ ∞, expression (28) implies that the first two-stage expectation is given by

Ed(V̂d) = Vd{N−1Ĝreg(B)} −
1
N2

∑

i∈U
Vd{ĝ

◦
i (B)} + o (1),

where o (⋅) is the order of convergence in probability with respect to the sampling design (s) (e.g. Isaki and Fuller,
1982). Hence

EmEd(V̂d) = EmVd
{

N−1Ĝreg(B)
}

− 1
N2

∑

i∈U
EmVd{ĝ

◦
i (B)} + o(1)⋅ (29)

Now,

Ed(V̂m) = 1
N2

∑

i∈U
Ed

{

ĝ◦i (B) ĝ
◦
i (B)

⊤}

= 1
N2

∑

i∈U
Vd{ĝ

◦
i (B)} +

1
N2

∑

i∈U
g◦i (B) g

◦
i (B)

⊤,

where g◦i (B) ∶= Ed{ĝ
◦
i (B)}. Hence,

EmEd(V̂m) =
1
N2

∑

i∈U
EmVd{ĝ

◦
i (B)} +

1
N2

∑

i∈U
Em

{

g◦i (B) g
◦
i (B)

⊤}⋅ (30)

Combining (26), (29) and (30) gives

EmEd(Ṽ ) = EmVd
{

N−1Ĝreg(B)
}

+ 1
N2

∑

i∈U
Em

{

g◦i (B) g
◦
i (B)

⊤} + o(1)⋅ (31)

Since Ed{N−1Ĝreg(B)} = N−1∑
i∈U g◦i (B) and Em{g◦i (B)} = o(1), it can be shown that

VmEd{N−1Ĝreg(B)} =
1
N2

∑

i∈U
Em

{

g◦i (B) g
◦
i (B)

⊤} + o(1)⋅ (32)

Now, (24), (31) and (32) imply

EmEd(Ṽ ) = EmVd
{

N−1Ĝreg(B)
}

+ VmEd{N−1Ĝreg(B)} + o(1)
= V + o(1)⋅

Consequently, n‖Ṽ −V ‖ = o(1), because Ṽ converges to amatrix of constants (e.g. Berger, 2018d). Thus, by assuming
that V − 12 N−1Ĝreg(B)

d
←←←←←←←→  (0, I), it implies that

r̂(#)
d
←←←←←←←→ �2df=p, (33)

in distribution with respect to the model and design. The constant p is the trace of the idempotent matrix (23); that is,
the dimension of #. The pivotal property (33) holds, when # is the target parameter, even if n∕N is large. When the
finite population parameter �N is the target, it is necessary to assume that n∕N is negligible for the pivotal property
(21) to hold. When n∕N → 0, the model variance of �N − # is negligible, �N = # + o(1) and (33) reduces to (21).

7. Simulation study
Consider a finite population generated from

yij = B0 + B1x
(1)
ij + B2x

(2)
ij + ui + eij , (34)
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where B0 = 20, B1 = B2 = 1, x
(1)
ij ∼ Γ(shape = 2, scale = �1i), x

(2)
ij ∼ Γ(shape = 2, scale = �2i), ui ∼ N(0, sd = �u)

and eij ∼ Γ(shape = �2e∕4, scale = 2) − �
2
e∕2, with �

2
e = 12 − �

2
u . The quantities �1i and �2i are selected randomly

with-replacement among the values {1, 2, 3} and {1, 2, 3, 4}, respectively. The number of clusters is N = 3000. The
cluster sizes Ki are generated randomly from Ki = ⌊100 exp(�i)⌋, with �i ∼ N(0, sd = 0.2), which gives Ki ranging
between 47 and 207, with

∑

i∈U Ki = 305 305. The values of �2u are chosen to obtain different intra-cluster correlations,
given by � ∶= �2u∕(�

2
e + �

2
u ) = �2u∕12. The correlations considered range from 0.04 to 0.83 (see Table 1). Known

population-level parameters are not considered. The parameter, �N = (�0N , �1N , �2N )⊤ obtained from (3) are given in
Table 1.

Table 1

Values of �2u , �, b0 and b1 used to generate the population data. Values of the components of the �nite
population parameter �N . N = 3000.

�2u � b0 b1 corr(�i, ui) �0N �1N �2N
0.50 0.04 4 0.40 0.87 20.00 1.00 1.00
3.00 0.25 7 1.00 0.86 20.05 1.00 1.00
6.00 0.50 11 1.55 0.84 20.06 1.00 1.00
10.00 0.83 15 2.00 0.84 20.06 1.00 1.00

Consider three estimators: the standard restricted maximum likelihood (RML) estimator �̂rml = (�̂rml0 , �̂rml1 , �̂rml2 )⊤,
the weighted composite likelihood (CL) estimator �̂cl = (�̂cl0 , �̂

cl
1 , �̂

cl
2 )

⊤ and the empirical likelihood (EL) estimator
proposed �̂el = (�̂el0 , �̂

el
1 , �̂

el
2 )

⊤; which is the solution to (16). The empirical likelihood and the WGEE approaches give
the same point estimator as EL, because m̂i = �−1i when known population-level parameters are not considered.

Let �̂ be an estimator of a parameter �N ∈ �N . Let �̂m denote an estimate based on the m-th sample, where
m = 1,… ,M and M = 10 000. The empirical relative bias (%) of �̂ is RB% ∶= [{E(�̂) − �}∕�] × 100%, where
E(�̂) ∶=M−1∑M

m=1 �̂m is the empirical design-based expectation.
The simulation was done in R (R Core Team, 2019). Some of the R codes used in this §, are available on the second

author’s web-page: http://www.yvesberger.co.uk.

7.1. Inclusion probability correlated with the random effect
The number of two-stage samples selected is 10 000. The first stage is a randomized systematic sample of n = 150

PSUs selected with unequal probabilities proportional to �i = b0 + ui + b1�i, where �i ∼ exp(rate = 1) − 1. The values
b0 and b1 are given in Table 1. They are chosen so that 0.84 ⩽ corr(�i, ui) ⩽ 0.87.

For the second stage, simple random samples of ki = �Ki SSUs were selected within the PSU i selected, where
� = 0.25 in Tables 2 and 3; and � = 0.1, 0.25 and 0.4, in Tables 5 and 6. With � = 0.1, 5 ⩽ ki ⩽ 21, 12 ⩽ ki ⩽ 52
with � = 0.25 and 19 ⩽ ki ⩽ 83 with � = 0.4.

The RB of the regression parameters are given in Table 2. Note that the selection probabilities of the PSUs are
proportional to the random effect ui which characterises the intercept. This is the reason of the observed differences
between the relative biases of the intercepts. No noticeable differences are observed between the bias of the RML and
empirical likelihood estimators of �1N and �2N , because the inclusion probabilities only affects the intercept. The
RML point estimator �̂rml0 is slightly biased, because the unequal probabilities. The RB increases with the intra-cluster
correlation. The EL estimators has the smallest bias.

The Monte Carlo design-based performance of the EL confidence interval based upon (21) is compared with the
alternative confidence intervals. The nominal level is 95%. The WGEE confidence interval is based on inverse testing
(Binder and Patak, 1994) and Hartley and Rao’s (1962) variance estimator. Composite likelihood confidence intervals
rely on conditional linearised variance estimator proposed by Rao et al. (2013, p.270). Restricted maximum likelihood
estimation confidence intervals are those obtained from the lme() function in R (R Core Team, 2019).

The observed coverages are given in Table 3. The p-values of D’Agostino’s (1970) K-squared test of normality,
show that the point estimators are mostly not normally distributed. Coverages of the RML confidence intervals for
the intercept are significantly different from the nominal level, which is 95%, in all cases. The coverages decrease
with the intra-cluster correlation. Poor coverages are due to the bias of �̂rml0 . In this case, the variance of �̂rml0 is also
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Table 2

Relative biases (%), biases and standard errors for di�erent intra-cluster correlations, �. N = 3000. n = 150.
Relative biases (%) Biases ×1000 Standard errors ×100

� el rml cl el rml cl el rml cl

0.04 �0N 0.03 0.63 0.05 6.2 126.0 9.5 12.6 12.2 13.0
�1N 0.00 0.01 0.07 0.0 0.1 0.7 1.8 1.7 1.9
�2N −0.06 −0.07 −0.10 −0.6 −0.7 −1.0 1.4 1.3 1.5

0.25 �0N 0.02 2.05 0.03 3.5 410.8 6.9 18.6 16.5 21.8
�1N 0.03 0.03 0.50 0.3 0.3 5.0 1.7 1.6 2.7
�2N −0.03 0.00 −0.13 −0.3 0.0 −1.3 1.3 1.3 2.2

0.50 �0N 0.01 2.62 0.07 2.8 525.8 14.4 22.6 20.4 28.1
�1N 0.03 0.00 0.55 0.3 0.0 5.5 1.4 1.3 3.4
�2N −0.03 −0.01 −0.19 −0.3 −0.1 −1.9 1.1 1.0 2.7

0.83 �0N 0.03 3.22 0.10 6.3 646.2 20.6 27.3 24.7 34.9
�1N 0.01 0.02 0.74 0.1 0.2 7.4 0.8 0.8 4.0
�2N −0.01 −0.03 −0.26 −0.1 −0.3 −2.6 0.6 0.6 3.2

substantially underestimated. The EL confidence intervals have better coverages than the WGEE and CL confidence
intervals.

Table 3

Observed coverages (%) of 95% con�dence intervals, for di�erent intra-cluster correlations, �. D'Agostino's
K-squared p-values within parentheses. N = 3000. n = 150.

� el rml wgee cl

0.04 �0N 94.9 (0.89) 82.9† (0.60) 94.3† (0.89) 94.6 (0.90)
�1N 94.8 (0.00) 95.0 (0.00) 94.2† (0.00) 94.8 (0.00)
�2N 94.9 (0.71) 94.9 (0.56) 94.2† (0.71) 94.5† (0.93)

0.25 �0N 94.6 (0.00) 31.4† (0.33) 94.1† (0.00) 94.2† (0.02)
�1N 94.8 (0.79) 94.9 (0.56) 94.3† (0.79) 93.8† (0.00)
�2N 94.1† (0.01) 94.7 (0.01) 93.7† (0.01) 94.2† (0.03)

0.50 �0N 95.1 (0.00) 28.7† (0.13) 94.6 (0.00) 94.7 (0.01)
�1N 94.6 (0.05) 95.1 (0.18) 94.0† (0.05) 93.9† (0.84)
�2N 94.6 (0.00) 95.4 (0.00) 94.1† (0.00) 94.2† (0.00)

0.83 �0N 94.9 (0.11) 27.7† (0.63) 94.3† (0.11) 94.5† (0.09)
�1N 94.7 (0.03) 95.4 (0.11) 94.1† (0.03) 94.3† (0.63)
�2N 94.5† (0.01) 94.8 (0.00) 93.9† (0.01) 94.5† (0.05)

† Coverages signi�cantly di�erent from 95%. p-value ≤ 0.05.

7.2. Large sampling fractions
The observed coverages for sampling fractions ranging from 5% to 70% and with a sample size of n = 150 PSUs

are given in Table 4. The number of two-stage samples selected is 1000. The data follow the same model (34), with
the variables generated as before. The only difference is that eij ∼ N(0, sd = �e) rather than following a Gamma
distribution, in order to eliminate the effect of heteroscedasticity and isolate the effect of the sampling fraction. A
model-design based approach is considered, withB being the parameter of interest, as in §6. As expected, the coverages
observed are mostly not significantly different from 95%, because of (33). The columns’ medians are reported in the
last row. With n∕N = 5%, the median is 94.9%. With larger sampling fraction, the medians is slightly lower than
94.9%, without being significantly different from 95%. There is no other trend to report.
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Table 4

Observed coverages (%) of 95% con�dence intervals, for di�erent intra-cluster correlations � and di�erent
sampling fractions n∕N . The columns' medians are given in the last row. n = 150.

n∕N
� 5% 10% 20% 40% 50% 70%
0.04 B0 95.6 93.5† 94.8 94.9 95.1 94.1

B1 94.2 94.0 94.6 94.6 95.1 94.8
B2 95.3 94.8 93.6† 94.2 95.0 94.8

0.25 B0 95.2 94.3 94.4 94.3 94.2 95.0
B1 95.1 93.5† 94.7 94.6 93.3† 93.1†

B2 92.5† 93.9 92.9† 94.9 94.1 93.3†

0.50 B0 94.4 94.9 94.0 95.5 94.6 95.1
B1 94.1 94.3 95.6 93.9 94.6 94.6
B2 94.4 95.7 94.8 93.7 93.7 93.9

0.83 B0 95.0 94.3 94.1 94.6 94.3 94.8
B1 94.8 95.0 93.5† 94.9 96.6† 94.1
B2 95.4 94.4 93.1† 94.3 93.8 93.5†

Medians: 94.9 94.3 94.3 94.6 94.5 94.4
† Coverages signi�cantly di�erent from 95%. p-value ≤ 0.05.

7.3. Population with outlying values
The finite population is generated from the model (34) with eij ∼ N(0, sd = �e). The intra-cluster correlation

considered is � = 0.50. The number of clusters isN = 3000 and the Ki and ki are generated as in §7. Let 10% of the
yij be replaced randomly by values generated randomly from Y0.75 +1.5× (Y0.75 −Y0.25) + �ij , where �ij ∼ Γ(sℎape =
2, scale = 2) − 4. The quantities Y0.25 and Y0.75 are the lower and upper population quartiles of the yij . Another set
of 10% of the yij are replaced by values generated randomly from max{yij} + �ij . The number of PSUs selected is
n = 150. Simple random sampling without replacement is used at both stages, in order to isolate the effect of outlying
values.

Table 5

Relative bias (%) of point and variance estimators, within parentheses, for di�erent second stage sampling
fractions ki∕Ki. Population with outlying values. N = 3000. n = 150.

ki∕Ki el
‡

rml wgee cl

0.10 �0N 0.20 0.20 (-1.66) 0.20 (-6.14) 0.26 (-2.13)
�1N 0.17 0.17 (24.77) 0.17 (-6.21) 0.37 (-1.85)
�2N −1.17 -1.16 (33.18) -1.17 (-7.01) -1.62 (-4.14)

0.25 �0N 0.14 0.14 (2.47) 0.14 (-3.32) 0.27 (0.85)
�1N 0.08 0.08 (26.59) 0.08 (-5.37) 0.32 (-1.90)
�2N −0.72 -0.72 (37.44) -0.72 (-5.08) -1.62 (-2.36)

0.40 �0N 0.11 0.11 (4.61) 0.11 (-1.86) 0.27 (1.25)
�1N −0.05 -0.05 (30.45) -0.05 (-3.01) 0.21 (-0.09)
�2N −0.48 -0.47 (42.33) -0.48 (-2.59) -1.56 (-2.06)

‡ Variances are not provided, because they are not needed for el inference.

The relative biases (%) are given in Table 5. Since units are selected with equal probabilities, the empirical like-
lihood, RML and WGEE estimators are all equal because they are based upon the same estimating equation (4), with
equal inclusion probabilities. The parameter �2N is slightly underestimated. The RML approach gives positively bi-
ased variances. The variances of the point estimators are mostly underestimated with the WGEE and CL approaches,
especially when the sample sizes within PSUs are small.

Table 6 gives the observed coverages of confidence intervals. The EL approach has slightly better coverages overall,
evenwhen the point estimators are not normally distributed. The coverages of theWGEE and the CL confidence intervals
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Table 6

Observed coverages (%) of 95% con�dence intervals, for di�erent second stage sampling fractions ki∕Ki.
Population with outlying values. D'Agostino's K-squared p-values within parentheses. N = 3000. n = 150.

ki∕Ki el rml wgee cl

0.10 �0N 94.8 (0.01) 94.8 (0.01) 93.8† (0.01) 94.5† (0.02)
�1N 94.4† (0.00) 97.2† (0.00) 93.9† (0.00) 94.4† (0.00)
�2N 94.2† (0.01) 97.6† (0.01) 93.8† (0.01) 94.0† (0.05)

0.25 �0N 95.0 (0.01) 95.2 (0.01) 94.3† (0.01) 95.1 (0.05)
�1N 94.3† (0.52) 97.1† (0.53) 94.0† (0.52) 94.2† (0.14)
�2N 94.5† (0.04) 97.8† (0.04) 93.7† (0.04) 94.3† (0.09)

0.40 �0N 95.0 (0.00) 95.5† (0.00) 94.5† (0.00) 95.0 (0.00)
�1N 94.8 (0.72) 97.2† (0.74) 94.3† (0.72) 94.7 (0.20)
�2N 95.2 (0.87) 98.1† (0.87) 94.6 (0.87) 94.4† (0.73)

† Coverages signi�cantly di�erent from 95%. p-value ≤ 0.05.

are mostly significantly different from the nominal level 95%. The biases of the variances observed in Table 5 explain
the under and over coverages.

7.4. Inference for model parameters
In this §, a model-design based approach is considered, as in §6. The model considered is (34), as in § 7, with

�2u = 8 and �2e = 4. Different distributions for ui and eij are considered. The number of PSUs is N = 2000, with
eij ∼ N(0, sd = �e) and ui ∼ N(0, sd = �u). The cluster sizes areKi = ⌊exp(�i)⌋, with �i ∼ N(0+1×(B0+ui), sd =
0.224), 0 = 5.8 and 1 = −0.09. In this case, Pfeffermann et al.’s (2006) and Kim et al.’s (2017) model assumptions
hold, because ui and eij are normally distributed. Consider 500 finite populations generated from (34). For each
population, n = 100 PSUs are selected with randomized systematic sampling with �i ∝ Ki. Simple random samples of
ki = 12 SSUs were selected from each PSU sampled.

The empirical likelihood estimator (EL) described in §6 is compared with the standard restricted maximum like-
lihood (RML) estimator, Kim et al. (2017)’ estimator based on an EM algorithm (EM), Kim et al. (2017)’ scaled-EM
estimator and Pfeffermann et al.’s (2006) MCMC estimator. The scaled-EM estimator is obtained by multiplying �−1j∣i
by the scaling factors (7) in the maximisation step (see Kim et al., 2017, p.484). Consider 100 bootstrap samples to
estimate the variances of the EM estimators (Rao, Wu and Yue, 1992). The MCMC algorithm is implemented with
the package R2WinBUGS (Sturtz, Ligges and Gelman, 2005). The length of the chain is 5000, with 3000 “burn-in”.
The following flat prior were used. B ∼ N(0, 106I3), (0, 1)⊤ ∼ N(0, 103I2), �e ∼ Un(0, 103), �u ∼ Un(0, 103),
�� ∼ Un(0, 10) (e.g. Pfeffermann et al., 2006), where Id denotes the d × d identity matrix.

Table 7

Relative biases (%) of the point estimators of in�nite population parameters. N = 2000. n = 100.

el rml em scaled-em mcmc

B0 −0.11 −3.68 −4.56 −1.07 0.01
B1 0.01 −0.03 −0.03 0.13 0.01
B2 0.08 0.08 0.08 0.07 0.11
�2e 0.13‡ 0.30 −1.62 −2.35 0.59
�2u −1.58‡ −0.57 0.28 1.00 2.54
‡ Relative biases (%) of the method-of-moments estimators
(see Appendix A).

The observed RB are given in Table 7. The intercepts are negatively biased with RML, EM and scaled-EM. EM is
clearly biased. On the other hand, the scaled-EM estimator has a smaller bias. The EL and the MCMC approaches are
less biased. The observed coverages of the confidence intervals and the p-values of the normality test are given in
Table 8. The MCMC confidence intervals are defined by the 2.5% and 97.5% quantiles of the posterior distribution.
The EM confidence intervals are the usual confidence intervals based on variance estimates. The coverages of the EL
confidence intervals are not significantly different from 95%. The alternative approaches give coverages significantly
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Table 8

Observed coverages (%) of 95% con�dence intervals for in�nite population parameters. D'Agostino's K-squared
p-values within parentheses. N = 2000. n = 100.

el rml em scaled-em mcmc

B0 95.4 (0.14) 31.8† (0.20) 16.2† (0.22) 88.4† (0.40) 96.8† (0.22)
B1 95.2 (0.23) 96.0 (0.49) 96.0 (0.45) 95.6 (0.30) 95.6 (0.54)
B2 93.6 (0.93) 95.2 (0.69) 94.8 (0.74) 94.4 (0.49) 96.2 (0.60)
† Coverages signi�cantly di�erent from 95%. p-value ≤ 0.05.

different from 95%, for the intercept term. The negative bias of the RML and EM point estimators explains the low
coverages. This is not dues to a lack of normality, because normality is not rejected in all cases.

In order to investigate the robustness against incorrect model assumption, skewed random effects are generated; that
is, ui = �u(vi−0.774)×1.5795, where vi are generated from a skewed normal distribution with a location= 0, scale= 1
and shape= 4. In this case, the data deviate from Pfeffermann et al.’s (2006) andKim et al.’s (2017)model assumptions.
ConsiderN = 2000 PSUs. The cluster sizes are Ki = ⌊exp(�i)⌋, with �i ∼ N(6.5 − 0.09 × (B0 + ui), sd = 0.224).

Table 9

Relative biases (%) of the point estimators of in�nite population parameters. Random e�ects following a
skewed normal distribution. N = 2000. n = 100.

el rml em scaled-em mcmc

B0 0.00 −3.27 −3.61 −0.60 −0.20
B1 0.01 −0.01 0.00 −0.22 0.00
B2 −0.10 −0.07 −0.08 0.00 −0.02
�2e 0.04‡ 0.14 −0.96 −1.25 0.43
�2u −1.78‡ −17.27 −0.28 −2.66 −14.68
‡ Relative biases (%) of the method-of-moments estimators
(see Appendix A).

Table 10

Observed coverages (%) of 95% con�dence intervals for in�nite population parameters. Random e�ects with
skewed normal distribution. D'Agostino's K-squared p-values within parentheses. N = 2000. n = 100.

el rml em scaled-em mcmc

B0 95.2 (0.22) 36.6† (0.32) 31.4† (0.90) 90.6† (0.03) 92.8 (0.34)
B1 94.2 (0.17) 97.0† (0.03) 95.4 (0.03) 94.4 (0.34) 96.8† (0.02)
B2 95.6 (0.39) 96.2 (0.09) 95.2 (0.11) 96.2 (0.43) 96.8† (0.18)
† Coverages signi�cantly di�erent from 95%. p-value ≤ 0.05.

The RB and observed coverages are presented in Tables 9 and 10. The empirical likelihood approach have smaller
RB and coverages not significantly different from 95%. Compared to Table 7, it seems that the skewness of ui increased
significantly the RB of the RML, scaled-EM and MCMC estimators of �2u . On the other hand, the method-of-moments
and the EM estimators of �2u are more robust. Significantly low coverages for the confidence intervals of B0 for RML,
EM and scaled-EM are observed, as in Table 8. For the MCMC approach, a better coverage is observed for the B0, but
with over-coverages for B1 and B2.

8. Educational survey data (PISA)
In this §, the EL approach proposed is applied to the 2006 PISA survey data (OECD, 2006, 2007) for the United

Kingdom. The data consist of students selected from a stratified two-stage sampling design. Information on the skills
and knowledge of 15-year-old students were collected. The schools are the PSUs and the students are the SSUs (OECD,
2006). §8.1 presents the result of a simulation study. The proposed approach is applied to the original data in §8.2.
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8.1. Simulation study
These PISA survey data were inflated to create an artificial population of size

∑

i∈U Ki = 396 768 withN = 4016.
The cluster sizesKi range from 12 to 220. The model (34) is used, where the response variable yij is the ‘mathematics
achievement score on average’. The explanatory variables are ‘female’ (1 if female, and 0 otherwise) and the ‘socio-
economic status of parents’ given by the Ganzeboom, Graaf and Treiman’s (1992) index.

The number of two-stage cluster samples elected is 10 000. The first stage is a randomized systematic samples of
n = 200 PSUs with unequal probabilities proportional to the reciprocal of the survey school weights provided in the
PISA data. The reciprocal of the weights were re-scaled to avoid very small and very large selection probabilities. For
the second stage, ki = �Ki SSUs are selected simple random sampling, within the ith sample PSU, with � = 0.25, 0.5
and 0.75. The finite population parameter is �N = (�0N , �1N , �2N )⊤ = (446.82,−16.81, 1.17)⊤.

Table 11

Observed coverages (%) of 95% con�dence intervals for di�erent second stage sampling fractions ki∕Ki. 2006
PISA survey data for the United Kingdom. D'Agostino's K-squared p-values within parentheses. N = 4016.
n = 200.

ki∕Ki �N el rml

0.25 �0N 91.0† (0.08) 87.4† (0.40)
�1N 93.5† (0.55) 82.6† (0.63)
�2N 88.1† (0.38) 80.7† (0.93)

0.50 �0N 93.8† (0.24) 86.0† (0.36)
�1N 94.1† (0.26) 74.6† (0.86)
�2N 93.0† (0.72) 74.0† (0.81)

0.75 �0N 94.6 (0.02) 84.3† (0.07)
�1N 94.5† (0.51) 68.7† (0.67)
�2N 94.2† (0.09) 65.2† (0.53)

† Coverages signi�cantly di�erent from 95%. P-value ≤ 0.05

The observed coverages (%) of the EL and the RML confidence intervals are provided in Table 11. The RML approach
has poor coverages, because the variance estimator is negatively biased. The coverages of the EL confidence intervals
are closer to the nominal level than those of the RML confidence intervals.

8.2. Application to the original PISA survey data
In this §, the original 2006 PISA survey data for the United Kingdom are used to compare the EL, RML, EM, scaled-

EM andMCMC point estimates and their p-values. The original data consists of
∑

i∈S ki = 13 152 students and n = 502
schools. The sample cluster (school) sizes ki range from 3 to 55. The reciprocal of school and student survey weights
were, respectively, used as proxies for �i and �j∣i.

Consider the regression model (34), where ‘mathematics achievement score on average’ is the response variable.
The covariates are

Mother-tertiary: 1 if mother has a tertiary education, 0 otherwise
Parent-tertiary: 1 if parents have tertiary education, 0 otherwise
Public: 1 for public school, 0 otherwise
Large-class: 1 for class size over 25, 0 otherwise
City: 1 for city located schools, 0 otherwise
Native: 1 for first and second generations not immigrant, 0 otherwise
Sub-nation: 1 for Scotland, 0 otherwise

Table 12 gives the point estimates and their p-values. Wald’s test statistics have been used for RML, EM, scaled-EM
and MCMC. Note all the approaches give different set of point estimates. ‘Public’ is significant with all the approaches
except with EM. ‘City’ is significant with the RML, EM, scaled-EM andMCMC. ‘City’ is not significant with EL. ‘Public’
is the only significant effect with EL.

The difference between EL and RML is due to the fact that RML ignores the survey weights. Point and variance
estimates may be biased, because some students can be miss-represented. This may also apply to other parametric
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Table 12

Comparison of the methods in terms of point estimates and signi�cance p-values. Original 2006 PISA survey
data for the United Kingdom. P-values within parentheses. n = 502.

el rml em scaled-em mcmc

Mother-tert. −1.73 (0.99) −0.52 (0.70) −3.24 (0.07) −2.05 (0.40) −0.56 (0.68)
Parent-tert. −2.30 (0.88) 0.26 (0.85) −2.37 (0.22) −2.38 (0.41) 0.28 (0.84)
Public −33.20 (0.00†) −14.33 (0.01†) −6.75 (0.45) −24.97 (0.02†) −15.40 (0.00†)
Large-class −18.32 (0.62) −1.28 (0.75) −1.35 (0.83) −10.05 (0.09) −2.73 (0.50)
City −11.13 (0.57) −8.86 (0.04†) −21.98 (0.00†) −18.05 (0.01†) −8.52 (0.04†)
Native 5.46 (0.25) 7.67 (0.02†) 7.63 (0.09) 5.56 (0.31) 7.43 (0.02†)
Sub-nation 7.89 (0.96) 9.82 (0.04†) 16.95 (0.00†) 6.74 (0.19) 9.62 (0.04†)
† p-value ≤ 0.05.

approaches as observed in the simulation study (see §7.4). The RML and MCMC provide similar estimates. The MCMC
approach assumes that the selection probabilities of schools are proportional to schools sizes, approximated by a log-
normal distribution (see §7.4 for more details). However, the selection model may not be correct. The EL point
estimator takes the design into account without the need of a selection model. It also provides accurate p-values,
because they are based on an ancillary test statistic which accounts for the design.

9. Discussion
The simulation studies shows that the empirical approach may provide less biased point estimates and better confi-

dence intervals, even when the point estimator is not normal, the data are skewed or include outlying values. Alterna-
tive confidence intervals may have coverages significantly different from the nominal value, when sample sizes are not
large enough or data include outlying values. Parametric approaches may not necessarily be robust when the model
assumptions do not hold.

The empirical likelihood confidence intervals are data driven and have the advantage of not requiring variance
estimates, re-sampling, linearisation and second order inclusion probabilities. They are not based on the normality of
the point estimator. The empirical likelihood approach proposed takes into account the sampling design. It is also the
less computer-intensive approach. The approach proposed can be extended to multilevel models with random slopes
and/or complex correlation structures.

The empirical likelihood approach proposed accommodates large PSU-level sampling fraction, without the need of
adjustment factors based on eigenvalues (Berger, 2018a; Zhao andWu, 2018; Rao and Scott, 1981), design effects (Wu
and Rao, 2006) or finite population corrections (Berger and Torres, 2016). With small or large sampling fraction, the
pivotal property holds, when the model parameter is the target parameter. When the finite population parameter is the
target, it is necessary to assume negligible sampling fraction for the pivotal property to hold, because it ensures that the
variation between the model and finite population correction is negligible. Classical approaches based on variance esti-
mates require separate estimation of a design-based variance and model-based variance. The empirical log-likelihood
ratio function implicitly includes a consistent model-design-based variance estimate with an adjustment for the model
variance, without the need of adjustments involving joint-inclusion probabilities (see §6). Therefore empirical likeli-
hood confidence intervals can be constructed for model parameters, taking into account of the model-design variability,
even with large sampling fractions. For example, this cannot be achieved easily with rescaled bootstrap, because it
requires small sampling fractions. Traditional parametric approaches often relies on small sampling fractions.

Full response is assumed. Imputation and weight trimming are other features that exist with survey data. These
problems are beyond the scope. However, the approach proposed can be combined with with Berger’s (2018a) adjusted
empirical likelihood approach for unit nonresponse under cluster sampling.
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Supplementary material
In Appendix A describes the estimators of the variance components. A comparative simulation study related to

these estimators is also presented. The regularity conditions and the detailed proof of Theorem 1 and Lemma 1 can be
found in Appendix B.
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