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Sammendrag 

Tradisjonell mikroøkonomisk teori for konsumenters adferd forutsetter at varene som etterspørres er 

uendelig delbare. Med dette menes at konsumentene kan etterspørre et hvilket som helst kvantum av en 

vare. Det er imidlertid åpenbart at de fleste varer som etterspørres slett ikke er uendelig delbare. 

Eksempler er valg mellom varianter av differensierte produkter (slik som biler, kjøleskap, støvsuger, 

mobiltelefon), alternative transportalternativer, utdanning (retning og nivå), type jobb, yrkesdeltaking, 

bolig, osv. I slike tilfeller kan teorien for såkalte diskrete valg benyttes. 

 

Mens tradisjonell mikroøkonomisk teori omfatter analyse av kompenserte priselastisiteter har det hittil 

ikke vært utviklet tilsvarende resultater innen diskret valghandlingsteori. Et sentralt resultat i tradisjonell 

teori er den såkalte Slutsky likningen, som spesifiserer sammenhengen mellom de kompenserte og 

ukompenserte priselastisitetene.  

 

I denne artikkelen etableres kompenserte priselastisiteter for situasjoner med diskrete valg. Videre 

utledes en aggregert Slutsky-likning for diskrete valgmodeller (diskret Slutsky-likning). Denne har noen 

fellestrekk med Slutsky-likningen i tradisjonell teori, men har også noen egenskaper som avviker fra 

denne. Et bemerkelsesverdig trekk ved de kompenserte priselastisitetene i det diskrete tilfellet er at de 

kan være asymmetriske, da de kompenserte elastisitetene med hensyn til en prisøkning kontra en 

prisnedgang kan være ulike.  

 

Endelig utledes diskrete Slutsky-likninger for utvalgte eksempler. 
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1 Introduction 

The theory of compensated demand is well developed for the standard textbook case with 

infinitely divisible quantities of commodities: see, for example, Hausman (1981). However, in 

many instances consumers face choice settings where alternatives are discrete. These include 

choice between variants of a differentiated product, modes of urban transportation, residential 

location, types of education, types of child-care, etc. In the context of discrete choice settings, 

one cannot apply the standard microeconomic textbook approach to obtain individual demand 

functions. The reason is that the set of feasible consumption alternatives is not a continuum and 

the corresponding utility function is not differentiable. Therefore, the standard approach based 

on the usual marginal calculus technique does not apply. Instead, the operational concept that 

corresponds to individual demand in the infinitely divisible case is aggregate demand: that is, 

the compensated and uncompensated choice probabilities.  

 In the context of welfare analysis in discrete choice settings, the standard tools of applied 

welfare economics are not directly applicable either. Consequently, it is important to develop 

practical welfare measures in these settings, because welfare judgments are of major interest in 

applications with finite choice sets, as in the examples mentioned above. As in the textbook 

case, typical evaluations of interest are the welfare effect of changes in prices, taxes, quality 

attributes of alternatives and choice sets. In addition to welfare analysis, marginal compensated 

measures also serve to justify key price indexes.  

      A central aspect of welfare assessments is the calculation of marginal compensated price 

effects. In cases with infinitely divisible quantities of commodities, the Slutsky equation plays 

a key role. The Slutsky equation, referred to as the “fundamental equation in value theory” by 

Hicks (1936), allows one to compute the compensated price elasticities from the corresponding 

demands, uncompensated price and income elasticities. 

            The main purpose of this paper is to derive a Slutsky equation for random utility models 

of discrete choice behavior (discrete Slutsky equation). The Slutsky equation in this case is an 

aggregate one as it represents the relationship between the compensated and uncompensated 

price and income elasticities of the corresponding choice probabilities. The Slutsky equation 

we obtain also covers a specific case of discrete/continuous choice. In a separate paper (Dagsvik 

et al., 2021), marginal compensated wage elasticities for discrete labor supply models are 

obtained. 

           In the special case where the utility function is linear in income and additive separable 

in income and price, there are no income effects and the marginal compensated effects then 
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equal the corresponding uncompensated effects. However, when utilities are non-linear in 

income one can no longer express marginal compensated effects by simple formulas. In such 

cases stochastic Monte Carlo (MC) simulation methods have previously been used to calculate 

welfare measures.  Discrete choice models where utilities are non-linear in income are quite 

common in urban travel demand studies, see, for example, the empirical applications discussed 

by Ben-Akiva and Lerman (1985), and McFadden (1981), where alternative-specific costs are 

divided by monthly income.  

Dagsvik and Karlström (2005) obtained analytic formulas for compensated choice 

probabilities in discrete choice models when utility is non-linear in income.1 The results in 

Dagsvik and Karlström (2005) serve as a point of departure for deriving the Slutsky equation 

in the discrete case. It turns out that the discrete Slutsky equation is, in part, analogous to the 

Slutsky equation in the standard indivisible case, but it also differs in important ways. 

Specifically, a remarkable feature of the compensated marginal price effects in the discrete case 

is that they are usually not symmetric, as the marginal compensated price effects with respect 

to a price increase versus a price decrease in general may be different.  

Instead of deriving analytic results for the Slutsky equation, one could alternatively 

conduct (MC) simulations of marginal compensated effects, as in McFadden (1999) and 

Niemeier (1997). However, it is important to derive analytic results for several reasons, 

provided that they are simple to use in practical computations, as is the case with the analytic 

results obtained in this paper. First, analytic expressions reveal key qualitative features of the 

marginal compensated effects, such as the property that the marginal effects with respect to a 

price increase versus a price decrease in general may be different, as mentioned above. Second, 

analytic results are more precise than results based on MC simulations, because they are not 

plagued with simulation errors.  

An early welfare analysis for discrete/continuous choice was undertaken by Small and 

Rosen (1981). They seem to be the only ones who have previously discussed marginal 

compensated effects in this regard. Their analysis is, however, incomplete and, in part, 

misleading, as will be discussed further later.  

The paper is organized as follows. In Section 2 we discuss the notion of compensated 

choice, expenditure function and corresponding choice probabilities in the discrete choice 

setting based on random utility representations. In Section 3 the analysis of Small and Rosen 

                                                      
1 Further results regarding welfare analysis in the context of discrete choice have been obtained by Bhattacharya 

(2015, 2018). 
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(1981) is revisited. Section 4 deals with joint ex ante and ex post compensated choice and the 

corresponding choice probabilities. In Section 5 we discuss marginal compensated effects with 

special reference to the discrete Slutsky equation and in Section 6 we explain why the marginal 

compensated effects in the discrete case are asymmetric. Section 7 considers some selected 

special cases.  

2. Compensated discrete choice   

In discrete choice theory based on random utility representations, the notion of uncompensated 

and compensated demand is more complicated than in the conventional textbook case. In 

addition, separate analyses are necessary for the one-period setting versus the two-period 

setting: that is, before (ex ante) and after (ex post) a reform is introduced. As will be explained 

shortly, the reason for this is that in random utility models there is no unique deterministic 

correspondence between prices and expenditure, since utilities are random functions of prices 

and income.   

           Remember that the random utility representation is motivated by the fact that not all 

variables that influence preferences are observable to the researcher. Some of the variables 

affecting preferences of a consumer may even be random to the consumer himself. The reason 

is that tastes may vary in an unpredictable way from one moment to the next across identical 

choice settings due to psychological factors and the difficulties decision-makers have 

establishing a definitive ranking of the alternatives. Consequently, the utilities, the demand and 

the expenditure functions all become interdependent random functions. This feature 

necessitates a careful probabilistic analysis based on the corresponding joint distribution 

function of these random variables. 

             Consider a general setting in which the consumer faces a choice of a composite 

continuous good and a set of discrete (and possibly discrete/continuous) alternatives where the 

discrete alternatives are mutually exclusive. Let 
0( , )j jU x x  be the utility of quantity 0x  of the 

composite good and let quantity jx  be associated with the discrete alternative j, j = 1, 2,…, m. 

Note that jU 
 depends on j because utility may depend on non-pecuniary attributes of alternative 

j. In the pure discrete case jx  is equal to 1 (when alternative j is chosen) or zero, but for the 

sake of comparison with Small and Rosen (1981) we shall also consider briefly the 

discrete/continuous case in which jx takes values in [0, ).   
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      The consumer is assumed to maximize 
0( , )j jU x x  subject to the budget constraint 

  
0 1

,
m

j jj
x p x y

=
+ =  0,jx   0,j kx x =  ,k j  , ,j k   

where y denotes income and jp the price of the discrete alternative j. The price of the composite 

infinitely divisible good with quantity 0x  is normalized to 1. Let ( , )j jU p y  be the conditional 

indirect utility given the discrete alternative j: that is, ( , )j jU p y  is the maximum of 
0( , )j jU x x  

subject to the budget constraint 0 .j jx p x y+ =  In the pure discrete case, where 1jx =  the 

indirect utility conditional on alternative j admits the form ( , ) ( ,1).j j j jU p y U y p= −  The 

general formulation above covers several (but not all) cases of interest. Other formulations 

appear in Dubin and McFadden (1984), Hanemann (1984) and Dagsvik (1994). Consider, for 

example, the choice of working in different labor market sectors, where it is understood that 

hours of work are fixed and possibly sector-specific. In this case of sectoral labor supply without 

taxes and with fixed hours of work, the conditional indirect utility can be expressed as 

( , ) ( ,1)j j j jU p y U y w= +  where now j jp w=  denotes the wage rate. Thus, the function 

( , )j jU p y  can be both increasing (occupational mobility and labor supply) and decreasing in

.jp   

 

       Assumption 1 

The (conditional indirect) utility function has the structure ( , ) ( , ) ,j j j j jU p y v p y = +  

where ( , )j jv p y  is a deterministic function that is continuously differentiable, strictly increasing 

in y and strictly monotone in jp  and 
1 2( , ,..., )m    is a stochastic vector with joint c .d .f. F 

that possesses a continuous probability density. 

 

Under Assumption 1 and with F being a multivariate extreme value distribution with 

Gumbel marginals, then the implied choice model becomes the Generalized Extreme Value 

(GEV) model (McFadden, 1978). Recall that the additive random utility structure assumed 

above, which is the same set-up as in Dagsvik and Karlström (2005), represents no loss of 

generality. Dagsvik (1994, 1995) and Joe (2001) have demonstrated that any random utility 

model can be approximated arbitrarily closely by a GEV model. Since the GEV family is a 

subclass of the random utility models generated by Assumption 1, it follows that Assumption 

1 represents no essential loss of generality. 
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             The agent’s choice set of available alternatives may be a subset of this universal set, 

{1,2,..., }.m  However, for simplicity we assume formally that all alternatives are available but 

with price ,jp =   ( , ) ( ,0)j j jv y v p = = −  and ( , ) / 0j j jv p y p  =  if alternative j is not 

available to the consumer. Evidently, this represents no loss of generality. Also, in the following 

(under Assumption 1), we shall sometimes write jv  or ( )jv y  instead of ( , ).j jv p y  Let ( , )J p y  

be the (Marshallian) choice function where
1 2( , ,..., )mp p p p=  is the vector of prices: that is, 

( , )J p y j=  if the discrete alternative j is chosen, given prices and income (p, y).  

 Let ( , )V p y  be the indirect utility defined by ( , ) max ( , )k k kV p y U p y=  and define the 

conditional expenditure function ( , ),j je p u  given alternative j, by the relation 

             ( , ( , )) ( , ( , ))j j j j j j j j ju U p e p u v p e p u = = +   

where u is a given utility level. When ( , )j jv p y  is strictly increasing in y it follows that 

( , )j je p u  is uniquely determined. The expenditure function (unconditional) ( , )e p u  is 

therefore given by 

(2.1)       ( , ) min ( , )j j
j m

e p u e p u


=   

which is equivalent to 

   ( , ( , )) .V p e p u u=   

Since the utility function depends on random taste variables the expenditure function becomes 

stochastic. Let ( , )cJ p u  denote the compensated discrete choice function given prices and 

utility level (p, u) and let ( , )c

jx p u  be the corresponding conditional compensated demand given 

alternative j. We then have that 

(2.2)    ( , ) ( , ( , ))cJ p u J p e p u=    and   ( , ) ( , ( , )).c c

j j j j j j jx x p u x p e p u= =   

Similarly, we have that  

(2.3)  ( , ) ( , ( , ))cJ p y J p V p y=    and    ( , ) ( , ( , )).c

j jx p y x p V p y=   

     Next, we consider the corresponding aggregate demand functions which in this context 

are the choice probabilities. Let  

      ( ) ( ( , ) ) ( ( , ) max ( ( , ) ))j j j j r r r rp, y P J p y j P v p y v p y  = = = + = +   

and define the social surplus function 

     1 2( , ,..., ) max ( )m k k kH v v v E v = +   
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0

1 2 1 2

0

(1 ( , ,..., )) ( , ,..., )m mF u v u v u v du F u v u v u v du



−

= − − − − − − − −               

which exists provided that the expectations of the random taste shifters exist. The definition of 

the social surplus function above can be extended to the case where the expectations of the 

random taste shifters do not exist, see McFadden (1981). It follows from Assumption 1 and 

McFadden (1981, pp. 212–214) that  

(2.4)                   1 1 2 2( ) ( ( , ), ( , ),..., ( , ))j j m mp, y H v p y v p y v p y =   

           1 1 2 2( ( , ), ( , ),..., ( , ))j m mF u v p y u v p y u v p y du



−

= − − −   

where jF   denotes the partial derivative of F with respect to component j. Note that the relation 

in (2.4) differs from Roy’s identity when utility is non-linear in income. We call ( , )j p y  the 

Marshallian (or uncompensated) probability of choosing alternative j. The corresponding 

uncompensated conditional demand function given the discrete alternative j follows from Roy’s 

identity, that is, 

(2.5)       
1

2

( , )
( , )

( , )

j j

j j j

j j

v p y
x x p y

v p y


= = −


  

where jkv , j = 1, 2, …, m, k = 1, 2, denotes the derivative with respect to component k. We note 

that the conditional demand functions in (2.5) are deterministic since they depend only on the 

deterministic terms of the utility function.   

           Similarly to the uncompensated demands the concept that corresponds to 

(aggregate) compensated demand for the discrete alternatives is the compensated (or Hicksian) 

choice probability. It is defined as 

               ( , ) ( ( , ) ) ( ( , ) ( , )).c c

j j jP p u P J p u j P e p u e p u= = = =   

Dagsvik and Karlström (2005, Theorems 1 and 2) have derived the formula for ( , )c
jP p u  and 

the distribution of ( , )e p u  under Assumption 1, which are given by 

         1 1 2 2
0

( , ) ( ( , ), ( , ),..., ( , )) ( , )c
j j m m jP p u F u v p y u v p y u v p y v p dy



= − − −  

and         

         1 1 2 2( ( , ) ) 1 ( ( , ), ( , ),..., ( , )).m mP e p u y F u v p y u v p y u v p y = − − − −  
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3. The analysis of Small and Rosen revisited 

Small and Rosen were the first to carry out welfare analysis in settings with discrete/continuous 

choice in their seminal paper (Small and Rosen, 1981) (SM). On pp. 105-114 in SM the analysis 

parallels conventional deterministic microeconomic theory for infinitely divisible goods, albeit 

with important modifications. It is not until p. 115 that they introduce the notion of choice 

probability to deal with randomness in preferences. In SM (3.19), p. 116, they define 

uncompensated and compensated choice probabilities. Unfortunately, they do not discuss 

explicitly how these probabilities are to be interpreted in terms of standard random utility 

formulations. Accordingly, the relation given in SM (3.25) is not correct (or at best misleading). 

If we use our notation the analogue to SM (3.19) would be 

     ( , ) ( , ( , )).c

j jP p u p e p u=   

However, the relation above is meaningless because the right side is random since ( , )e p u  is a 

random function. Moreover, because the expenditure function is random it is only differentiable 

within intervals with stochastic boundaries. Consequently, SM (3.25), and the following 

equations in SM, p. 117, is not consistent with the usual random utility setting. In order to 

calculate changes in compensated demand under a price change from p to p  it would be 

necessary to start with the following aggregate compensated change given by   

    ( ( , ( , )) ) ( ( , ) ),cP J p V p y j P J p y j= − =   

which is far from straightforward to calculate. This is the task to be addressed in the next 

section. 

4. Joint ex ante choice and ex post compensated choice  

Although (2.4) and (2.5) may have some theoretical interest, they are not directly useful in 

contexts where one wishes to analyze compensated demand after a specific policy reform has 

been introduced. The reason is that one needs to account for the fact that utilities are stochastic 

and unobservable. Let p  denote the ex post price vector and p and y the ex ante price vector 

and income. It follows that the ex post compensated choice is ( , ( , ))cJ p V p y . In the context of 

compensated demand it is assumed that the stochastic terms of the utility function remain 

invariant under the policy reforms. This assumption is common in welfare analysis based on 

random utility models. Unfortunately, it is in general the case that  

( ( , ) | ( , ) ) ( ( , ) ) ( , )c c c

jP J p u j V p y u P J p u j P p u= =  = =   
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Because ( , )cJ p u and ( , )V p y  are interdependent random variables. Consequently, 

( ( , ( , )) )cP J p V p y j=  may in general be different from ( , ( , )).c
jEP p V p y The latter formula 

would hold if ( , )cJ p u  and ( , )V p y  were independent, which is not the case. 

     Before we turn to the challenge to derive the distribution of the ex post compensated 

choice ( , ( , ))cJ p V p y  we need some additional concepts. Define jY  and Y by  

       ( ; , ) ( , ( , ))j j j j jY Y p p y e p V p y= =   

and  

                  ( ; , ) min ( ; , ).j j
j m

Y Y p p y Y p p y


= =  

Whereas jY  is the conditional ex post expenditure function given alternative j, Y is the 

unconditional ex post expenditure function that yields the income required to maintain the ex 

post utility level equal to the ex ante utility level.  

       Next, we consider the joint probability of the ex ante and ex post choice under a price 

change. Let ( , ; , , )( , ) cc
Q Q j k p p yj k =  be the joint compensated probability of choosing 

alternative j ex ante and alternative k ex post (which means that the respective utility levels of 

the chosen alternatives before and after the reform are the same). Thus, 

                        ( , ; , , ) ( ( , ) max ( , ) ( , ) max ( , )).
c

j j r r r k k r r r
Q j k p p y P U p y U p y U p Y U p Y= = = =               

For simplicity we shall, most of the time, write ( , )cQ j k  instead of ( , ; , , ).cQ j k p p y  Let  

            ( , , ) ( , ) ( ( ; , ) ( ; , ))c c c

k k k kr
Q Q p p y Q r k P Y p p y Y p p y= = = =   

which is the probability of choosing alternative j ex post conditional on the ex post utility being 

equal to the ex ante utility. Let jy be determined by ( , ) ( , ),j j j j jv p y v p y=  that is, jy  is the ex 

post income that ensures that the deterministic parts of the ex ante utility and ex post utility of 

alternative j are equal. If alternative j belongs to the ex ante choice set but not the ex post choice 

set, .jy =   If alternative j belongs to the ex post choice set but not the ex ante choice set, 0.jy =   

 

            Theorem 1 

Under Assumption 1 the compensated choice probability of choosing alternative j ex 

ante and alternative k ex post is given by 

(4.1)                 1 2( , ) 1{ } ( ( ), ( ),..., ( )) ( , )

j

k

y

c

j k jk m k k

y

Q j k y y H z z z v p dz  = −    
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        = 1 21{ } ( ( ), ( ),..., ( )) ( , )

j

k

y

j k jk m k k

y

y y F u z u z u z duv p dz  


−

 − − −    

when ,k j  j, k > 0, where ( ) max( ( , ), ( , ))r r r r rz v p y v p z =  for all r. Furthermore, when j = k, 

then 

(4.2)        
1 2( , ) ( ( ), ( ),..., ( ))c

j j j m jQ j j H y y y  =  

    1 2( ( ), ( ),..., ( )) .j j j m jF u y u y u y du  


−

= − − −   

 

     The formulas in Theorem 1 can be used to compute the ex post compensated joint choice 

probabilities { ( , )}cQ j k  and the ex post compensated probabilities { }c

kQ  after a change of the 

price vector from p to .p  Theorem 1 is equivalent to Theorem 4 in Dagsvik and Karlström 

(2005).2 In this paper we provide a simplified proof of Theorem 1 in the appendix. Note that 

( , )cQ j j  given in (4.2) has the same structure as a choice probability, that is, the probability of 

choosing alternative j when the utility of alternative r equals ( ) ,r j ry +  r = 1, 2, …, m. 

      Consider the case when 
*( , ) ( )r r r rv p y v y p= −  for all r where 

*

rv  is an increasing 

function. Then, under Assumption 1 it follows, for ,j k  that 

           
1 2( ( ), ( ),..., ( ))

( , ) { } .

j

k

y

j mc

j k

ky

H z z z dz
Q j k y y

p

  
= 

    

Thus, we realize that the integrand of the integral in the expression for ( , )cQ j k  in this case can 

be obtained by integrating the Marshallian choice probabilities as functions of { ( )}r z  with 

respect to z. 

            The result of Theorem 1 is instrumental in deriving compensated marginal effects and 

the corresponding Slutsky equation, as addressed in the next section.       

5. The discrete Slutsky equation  

We start with a brief review of the Slutsky equation in standard consumer theory where the 

quantities of goods are assumed to be infinitely divisible. Let ( , )kd p y denote the (Marshallian) 

                                                      
2 There is an error in Theorem 4 in Dagsvik and Karlström (2005). Eq. (4.2) in Theorem 1 corrects the corresponding 

expression in Dagsvik and Karlström (2005). 
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demand of commodity k as a function of prices and income (p, y) and let ( , )c

kd p u  denote the 

corresponding compensated demand function. The compensated demand function is not 

directly observable because it depends on the unobservable utility level. However, Slutsky 

(1915) showed how the marginal compensated demands can be obtained from the 

corresponding marginal Marshallian demands through the so-called Slutsky equation, which is 

given by    

(5.1)                
( , ) ( , )( , ) / ( , ) / | ( , ( , )) ( , ) /c

j k j k y e p u k j y e p ud p u p d p y p d p e p u d p y y |= =  =   +    

where ( , )e p u  is the expenditure function.3 This equation allows one to compute the 

unobserved marginal compensated demands with respect to price changes by using the 

corresponding marginal Marshallian demands (Varian, 1992). The equation in (5.1) can also be 

expressed as 

(5.2)       
( , )( , ) / | ( , ) / ( , ) ( , ) /c

j k u V p y j k k jd p u p d p y p d p y d p y y=  =   +    

where ( , )V p y  is the indirect utility function. The advantage of (5.2) compared to (5.1) is that 

the marginal compensated effect can be evaluated in observable terms, that is, prices and 

income.  

       Consider next the discrete case. Define  

      
0

( , , ) ( , )
lim

k

c c

j j j

p
k k k

Q p p y p y

p p p

 +



 −
=

 −
   and    

0

( , , ) ( , )
lim .

k

c c

j j j

p
k k k

Q p p y p y

p p p

 −



 −
=

 −
 

The expressions above are the right and left derivatives of ( , , )c

jQ p p y  with respect to the ex 

post price ,kp  evaluated at .kp  They correspond to the right and left marginal compensated 

effects of the probability of choosing alternative j resulting, respectively, from an increase or 

decrease of the price of alternative k. As we shall see below, it turns out that in general one has 

/ /c c

j k j kp p + −     , which means that in general the derivative /j kp   does not exist.  

 

       Theorem 2 (discrete Slutsky equation) 

            Assume that Assumption 1 holds with ( , )j jv p y  strictly decreasing in jp  for all j. Then 

                      ,

c

j j j

j

j j

x
p p y

  +  
= + 

  
     ,

c

j j

j jp p

 − 
=

 
 

                                                      
3 Usually, the uncompensated marginal price effect appears on the left side in the Slutsky equation. We prefer to 

write the compensated marginal price effect on the left side, in order to be consistent with the discrete Slutsky 

equation.  
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/

/

c

j j j

k k k

v y

p p v y

 +   
= 

   
  and  

c

j j

k kp p

 − 
=

 
 

for ,k j  where 

    
/

.
/

j j

j

j

v p
x

v y

 
= −

 
 

  

The proof of Theorem 2 is given in the appendix.  

Note that jx  is given by Roy’s identity applied to the systematic part ( , )j jv p y  of the 

utility function.  In the context of discrete/continuous choice settings jx  can therefore be 

interpreted as conditional demand, given the choice j. Furthermore that only the equation 

determining /c

j jp+   is similar to the standard Slutsky equation in (5.1) with income effect 

given by / .j jx y−    Note also that the difference between the direct left marginal 

compensated effect minus the direct right marginal compensated effect is equal to the income 

effect. 

From Theorem 2 the next result is immediate. 

 

             Corollary 1 

            Under the assumptions of Theorem 2 there is no income effect associated with a price 

decrease.  

 

In Section 6 we discuss why the asymmetry in the Slutsky equation occurs in discrete 

choice settings. In fact, it becomes clear from our analysis that Corollary 1 holds even under 

weaker assumptions than Assumption 1. 

We noted above that in some cases, such as in models of labor supply and occupational 

mobility, the utility function is increasing in “prices” (wage rates). By symmetry the result in 

the next corollary follows readily from Theorem 2. 

 

Corollary 2 

Under Assumption 1 with ( , )j jv p y  strictly increasing in jp  for all j we have that 

                      ,

c

j j j

j

j j

x
p p y

  −  
= − 

  
     ,

c

j j

j jp p

 + 
=

 
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/

/

c

j j j

k k k

v y

p p v y

 −   
= 

   
   and   

c

j j

k kp p

 + 
=

 
 

for ,k j  where 

         
/

.
/

j j

j

j

v p
x

v y

 
=
 

 

 

From Theorem 2 the next corollary is also immediate. 

 

Corollary 3 

Under Assumption 1 with ( , ) ( )j j jv p y v y p= −  for some strictly increasing function 

( )v   that is independent of j, we have that 

               ,

c

j j j

j jp p y

  +  
= +

  
  ,

c

j j

j jp p

 − 
=

 
 

         
( ) /

( ) /

c

j j j

k k k

v y p y

p p v y p y

 + 



   − 
=

   − 
    and    

c

j j

k kp p

 − 
=

 
 

for .k j  

 

             As mentioned above, the case of discrete labor supply models (e.g. van Soest, 1995, 

and Dagsvik and Strøm, 2006) is analyzed in a separate paper (Dagsvik et al., 2021). The reason 

is that this case does not immediately fit into the framework considered here because the price 

(wage rate) is the same for all discrete alternatives (positive hours of work schedules).  

             Consider next the discrete/continuous case where the conditional demand functions are 

determined by Roy’s identity, as explained above. Let ,j j jX x =  where jx  is given by (2.5). 

That is, 
jX  is the unconditional (aggregate) demand for alternative j in the case of 

discrete/continuous choice. For the conditional demands the direct marginal effect will 

obviously satisfy the conventional Slutsky equation: that is, 

      

c

j j j

j

j j

x x x
x

p p y

  
= + 

  
    and  0

c

j

k

x

p


=


  

for ,k j  since jx  does not depend on .kp  We therefore obtain the relation 

      .

c c c

j j j

j j

k k k

X x
x

p p p




   
=  + 

  
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Thus, the next corollary follows readily from Theorem 2. 

 

             Corollary 4 

            Under Assumption 1 with ( , )j jv p y  strictly decreasing in jp  it follows that  

        ,

c

j j j

j

j j

X X X
x

p p y

+  
= + 

  
  ,

c

j j j

j

j j

X X x
X

p p y

−  
= + 

  
 

                 
/

/

c

j j j

k k k

X X v y

p p v y

+   
= 

   
   and   

c

j j

k k

X X

p p

− 
=

 
 

for ,k j  where 

       
/

.
/

j j

j

j

v p
x

v y

 
= −

 
 

 

             We note that, as discussed in Section 3, the relations in Corollary 4 differ in important 

ways from the corresponding (misleading) relations given in Small and Rosen (1981, pp. 116–

118). 

        

    Quality changes 

In Theorems 1 and 2 only compensated effects triggered by price changes are accounted for. 

However, in many contexts it is of interest to calculate the compensated effects under quality 

changes. For example, we may wish to evaluate the effects of changes in travel times in urban 

transportation mode choice models. It is easy to extend the results of Theorem 1 to 

accommodate changes in non-pecuniary attributes of the discrete alternatives. To make the 

following discussion precise, let  

   ( , , ) ( , , )j j j j j j jU p t y v p t y = +   

be the utility function in the extended setting where jt  is a vector of non-pecuniary attributes 

(such as travel times) specific to alternative j. In this extended choice setting define 

( ) max( ( , , ), ( , , ))j j jz v p t y v p t z  =  where jt  denotes the ex post vector of non-pecuniary 

attributes. The modified version of (4.1) is obtained by replacing { },ky { ( )}k z  and ( , )j jv p z  

with { },ky
 { ( )}k z 

 and ( , , )j j jv p t dz  respectively, where ky
 is determined by  

( , , ) ( , , ).k k kv p t y v p t y=  Similarly, (4.2) is to be modified by replacing { ( )}k jy  with 

{ ( )}.k jy  
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            Consider next the marginal compensated effects with respect to the non- 

pecuniary attributes in the case where they are continuous variables.  

 

           Corollary 5 

           Assume that the utility function is given by ( , , ) ( , , )j j j j j j jU p t y v p t y = +  where

( , , )j j jv p t y  is strictly increasing in y and strictly decreasing in jp  for all j and 1 2( , ,...).j j jt t t=  

Then 

                    
/

,
/

c

j j j js j

js js j

v t

t t v y y

  +    
= − 

    
   ,

c

j j

js jst t

 − 
=

 
 

           
/

/

c

j j j

ks ks k

v y

t t v y

 +   
= 

   
     and     

c

j j

ks kst t

 − 
=

 
 

for .k j   

6. Why are compensated effects asymmetric? 

To get some intuition to why the left marginal compensated effect in general may be different 

from the right marginal effect in the discrete case we shall discuss the binary case with two 

alternatives, 1 and 2. The argument in the general case with many alternatives is similar. The 

result that the marginal effects are asymmetric does not depend on the utility structure being 

separable (additive or multiplicative) in a systematic (deterministic) term and random term. To 

realize this, we now relax Assumption 1 by assuming that the utility ( , )j jU p y  is a random 

function that is strictly decreasing in price , 1, 2,jp j =  and strictly increasing in income y with 

probability 1. Let jy  be determined by ( , ) ( , )j j j j jU p y U p y=  and let jkY  be the ex post 

expenditure when the ex ante choice is j and the ex post choice is k, j, k = 1, 2. Clearly, j jjy Y=  

is deterministic due to the fact that 
2 2( , )U p y  is almost surely strictly increasing in y. However, 

jkY  may be stochastic when .k j   

Consider first the case where the price of alternative 2 decreases to 
2 2 ,p p  whereas 

the price of alternative 1 remains unchanged. When the ex ante choice is alternative 1 and the 

ex post choice is alternative 2 then there are individual income effects. However, it turns out 

that the compensated probability (1,2)cQ  becomes equal to the corresponding uncompensated 

probability. To realize this, note that 
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(6.1)                  2 2 1 1 2 2 12 1 1 12(1,2) ( ( , ) ( , ) ( , ) ( , ))cQ P U p y U p y U p Y U p Y=  =    

which implies that the income compensation 12Y y−  is stochastic and 
12Y y  almost surely 

because 
1 1 1 1 12( , ) ( , ).U p y U p Y  Therefore, (1,2)cQ  reduces to 

(6.2)        2 2 1 1 2 2 12(1,2) ( ( , ) ( , ) ( , ))cQ P U p y U p y U p Y=  =  

       
2 2 1 1 2 2( ( , ) ( , ) ( , ))P U p y U p y U p y=     

                            
1 1 2 2 1 1 2 2 2 1 2 2( ( , ) ( , )) ( ( , ) ( , )) ( , , ) ( , )P U p y U p y P U p y U p y p p y p y =  −  = −  

which is the uncompensated probability of choosing alternative 1 ex-ante and alternative 2 ex-

post, which is equal to the difference between the ex post and ex ante probability of choosing 

alternative 2. In other words, the income compensation does not influence the joint choice 

probability (1,2).cQ  Furthermore 

   1 1 2 2 2 2 2 1 1 2(2,2) ( ( , ) ( , ) ( , ) ( , ))cQ P U p y U p y U p y U p y=  =    

which implies that the income compensation is deterministic and 
2 .y y  Thus, (2,2)cQ  

reduces to 

(6.3)    1 1 2 2 2(2,2) ( ( , ) ( , )) ( , )cQ P U p y U p y p y=  =   

which is the ex ante probability of choosing alternative 2. Hence it follows from (6.2) and (6.3) 

that 

(6.4)                2 2 2 1 1 2 1 2(1,2) (2,2) ( ( , ) ( , )) ( , , )c c cQ Q Q P U p y U p y p p y= + =  =   

which is the ex post uncompensated probability of choosing alternative 2. Thus, there are no 

income effects in this case at the aggregate level. 

           Consider next the case where 
2 2p p  whereas the price of alternative 1 is kept fixed. In 

this case 

(6.5)               2 2 1 1 2 2 12 1 1 12(1,2) ( ( , ) ( , ) ( , ) ( , )) 0cQ P U p y U p y U p Y U p Y=  =  =   

because it is not possible that both 
2 2 2 2 12( , ) ( , )U p y U p Y  and 

1 1 1 1 12( , ) ( , ).U p y U p Y   

Moreover,  

            1 1 2 2 2 2 2 1 1 2(2,2) ( ( , ) ( , ) ( , ) ( , ))cQ P U p y U p y U p y U p y=  =    

which implies that the income compensation is deterministic and 
2 .y y  Consequently,  

(6.6)             2 2 2 1 1 2(1,2) (2,2) (2,2) ( ( , ) ( , )).c c c cQ Q Q Q P U p y U p y= + = =   

We note that there is an essential difference between the probabilities given in (6.4) and (6.6) 

because when the price of alternative 2 decreases the ex post compensated probability of 

choosing alternative 2 becomes equal to the ex post uncompensated probability of choosing 
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alternative 2. In contrast, when the price increases there must be income compensation 
2y y−  

in order to maintain the utility level.  

            To gain further intuition, assume next that Assumption 1 holds and let G be the 

c. d. f. of  
1 2. −  Then 

2y  is determined by 
2 2 2 2 2( , ) ( , ).v p y v p y=  It follows from (6.4) that 

(6.7)      
2 2 2 2

2 2 1 1

2 2 2

( , ) ( , ) ( , )
( ( , ) ( , ))

c p y p y v p y
G v p y v p y

p p p

 −  
= = −

  
  

and from (6.6) that  

(6.8)       
2 1 1 2

2 2 1 1

2 2

( , ) ( , )
( ( , ) ( , ))

c p y v p y y
G v p y v p y

p y p

+  
= − −  

  
   

1 1 2 2 2
2 2 1 1

2 2

( , ) ( , ) /
( ( , ) ( , )) .

( , ) /

v p y v p y p
G v p y v p y

y v p y y

  
= −  

  
  

From (6.7) and (6.8) it follows that      

  
2 2 1 1

2 2 2 2

( , ) / ( , ) /

( , ) / ( , ) /

c

c

p y p v p y y

p y p v p y y





+

−

   
=

   
  

which is different from 1 provided that ( , )j jv p y  is not additively separable in price and 

income. 

 

7. Special cases   

In this section we illustrate the theoretical results obtained above by calculating the marginal 

compensated effects in selected examples. 

 

Example 1: Urban travel demand  

This example is typical for applications in urban travel demand analysis, see McFadden (1981), 

and Ben-Akiva and Lerman (1985). The utility function has the form 

  1 1 2 2( , , ) ,
j

j j j j j j j j j

p
U v p t y t t

y
     = + = + + + +  

1 0, =   

where the income variable y is the monthly wage, jp  is the cost of alternative j, 1jt  is “on-

vehicle time” of alternative j, 2jt  is “out-of-vehicle time” of alternative j, and { },j , 1 , and 

2  are unknown parameters. When the random error terms are independent with Gumbel c. d. 

f. exp( exp( ))x− −  for real x it follows that the choice model becomes the familiar multinomial 

logit model given by 
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(7.1)             
1 1 2 2

1 1 2 2

exp( / )
( , , ) .

exp( / )

j j j j

j j

k k k kk

p y t t
p t y

p y t t

   
 

   

+ + +
= =

+ + +
  

Below we give the compensated elasticities with respect to travel costs and travel times based 

on (7.1). Specifically, it follows that 

(7.2)   
2

log
( ),

j

j r rr
p p

y y

 



= − −


  

log
(1 )

log

j j

j

j

p

p y

 



= −


   and   

log
.

log

j k k

k

p

p y

  
= −


  

Theorem 2 and (7.2) therefore imply the following compensated price elasticities: 

           
log

,
log

c

j

r rr j
j

p
p y

 


+




=


      

log
,

log

c

j j k

k

p

p y

  +
= −


  

           
log log

(1 )
log log

c

j j j

j

j j

p

p p y

  


− 
= = −

 
  and   

log log

log log

c

j j k k

k k

p

p p y

   
− 

= = −
 

  

for .k j  From these results it follows that the income effects associated with a price increase 

are 

(7.3)                    
log log log log

( )
log log log log

c c c

j j j j

r j r

rj j j j

p p
p p p p y

    


− + +   
− = − = − −

   
    

 and  

(7.4)                   
log log log log ( )

.
log log log log

c c c

j j j j k j k

k k k k

p p

p p p p y

     − + +    −
− = − = −

   
  

From (7.2) and (7.3) we obtain that the conditional income effects associated with a price 

increase relative to the substitution effects are 

(7.5)     
( ) ( , )( log ( , , ) / log | )

1
( log ( , , ) / log | ) ( , )

r j rj j r

c

j j r rr j

p p p yE p t y p y

E p t y p y p p y



 +



− 
− = −

 




  

and 

(7.6)     
log ( , , ) / log ( )

1
log ( , , ) / log

j k k j

c

j k j

p t y p p p

p t y p p



+

  −
− =

 
  

where ( , ) ( ( , , ) | )j jp y E p t y y =  is the aggregate choice probability conditional on income. 

The formula in (7.6) shows that one can express the cross income effect relative to the cross 

substitution effect simply by knowledge of the prices. If (1/ )Var y  is small, it follows from 

(7.5) that 

(7.7)     
( ) ( )log ( , , ) / log

1
log ( , , ) / log ( )

r j rj j r

c

j j r rr j

p p pE p t y p

E p t y p p p



 +



− 
−  −

 



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where ( ) ( , , ).j jp E p t y =  The formula in (7.7) show that one can express the aggregate direct 

income effects relative to the aggregate direct substitution effects, approximately, solely by the 

prices and aggregate transportation shares, without knowing the parameter estimates. 

             Similarly, it follows from Corollary 5 that the compensated elasticities with respect to 

travel times are given by 

       
log

,
log

c

j s js

r rr j
js j

t
p

t p

 


+




=


    

log
,

log

c

j s j ks k

ks k

p t

t p

  +
= −


 

                        
log log

(1 ),
log log

c

j j

s js j

js js

t
t t

 
 

− 
= = −

 
   

log log

log log

c

j j

s ks k

ks ks

t
t t

 
 

− 
= = −

 
  

with corresponding income effects associated with an increase in travelling times that become, 

(7.8)                 
log log log log

( )
log log log log

c c c

j j j j s js

r j r

rjs js js js j

t
p p

t t t t p

    


− + +   
− = − = − −

   
   

and  

(7.9)                
log log log log ( )

log log log log

c c c

j j j j s ks k j k

ks ks ks ks k

t p p

t t t t p

     − + +    −
− = − = −

   
 

for s = 1, 2. From (7.3) to (7.9) we realize that the income effects may be substantial if the 

prices differ substantially. In contrast, there are no income effects when prices are equal. 

 

Exampe 2: Urban travel demand with endogenous price of one alternative 

In this example, the choice model is the same as given in (7.1), where alternative one is a public 

rail transit service where the price is determined as in models of oligopolistic competition 

(Anderson et al., 1992). Let c denote the marginal cost (assumed to be constant) of travelling 

for one passenger on the transit system. The management of the transit system is assumed to 

know the aggregate choice probability 1( ).p  The expected profit therefore becomes 

1 1( ) ( )p c p K− −  where K represents sunk cost. Let 1.Ey −=  If 1( )Var y−  is small we can 

write 1 1( ) ( , ).p p    By taking the prices of other alternatives as given, the price of a transit 

ride which maximizes expected profit is determined (approximately) by 

(7.10)        1

1

1
.

(1 ( , ))
p c

p  
 −

−
  

From (7.10) it follows by implicit differentiation that 

(7.11)       1
1 11 ( , ) 1 ( ).

p
p p

c
  


 −  −


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Hence, (7.3), (7.4) and (7.11) imply that the income effects associated with an increase in the 

marginal cost c becomes 

      1 1 1
1 1

1 1

log loglog log log
(1 ) ( )

log log log log log

cc
j j

r r

r

p
p p

c c p p c y

   
 

++     
− = −  − − −       

   

and 

     
1 1 11

1 1

log log log log (1 )( )log
.

log log log log log

c c

j j j j jp pp

c c p p c y

      + +     − −
− = −  −       

  

 

Example 3: Labor force participation with non-linear taxes and fixed hours of work 

Consider the following model of labor force participation of married women. The women face 

the choice of working full-time (alternative 2) with wage income w, or not working (alternative 

1). Hours of work h is normalized to 1. Let y be non-labor income (husband’s income) and

( , )f w y  is the function that transforms gross labor income w and non-labor income y to income 

after taxes. We assume that ( , )f w y  is continuously differentiable. The agent’s utility in 

disposable income C and hours of work h is given by the separable functional form 

      
1

( , ) ( )
C

U C h g h




−
= +   

where ( )g h  is a decreasing function and 1   is a parameter. Let  

(7.12)      2 2 2

( , ) 1f w y
U b






−
= + +    and  1 1 1

(0, ) 1f y
U b






−
= + +   

It follows that the agent will work if  

      
( , ) 1 (0, ) 1

(1) (0)
f w y f y

g g
 

 

− −
+  +   

which is equivalent to 2 1U U  where 1 1 (0),b g+ =  2 2 (1),b g+ = 1  and 2  are zero mean 

stochastic taste shifters. Let F be the c.d.f. of 1 2. −  The probability of working becomes 

(7.13)      
2 2

( , ) 1 (0, ) 1
( , )

f w y f y
w y F b

 

 
 

 − −
= = − − 

 
  

where 1 2b b b= −  When 0 =  the probability of working is defined by 

      ( )2 log ( , ) log (0, ) .F f w y f y b = − −  

Note that in this example utility is increasing in price (wage income). This implies that the right 

marginal compensated wage effect is equal to the corresponding marginal uncompensated wage 
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effect whereas the left marginal compensated wage effects differ from the corresponding 

marginal uncompensated effects (Corollary 2).  

Furthermore, it follows from (7.12), (7.13) and Corollary 2 that  

       
12 2

1

( , ) 1 (0, ) 1
( , ) ( , ) ,

c f w y f y
f w y f w y F b

w w

 
 

 

+
−    − −

 = = − − 
   

   

     2

y


=


 1 1

2 2

( , ) 1 (0, ) 1
( ( , ) ( , ) (0, ) (0, ))

f w y f y
f w y f w y f y f y F b

 
 

 

− −  − −
  − − − 

 
  

and    

              
2 2 2 2 2 1 2

2 2

( , ) / ( , )
.

( , ) / ( , )

c v w y w f w y

w w v w y y y w f w y y

    −       
= −  = − 

      
 

Thus, in this case we obtain that the income effect relative to the substitution effect of a wage 

decrease becomes 

(7.14)     

1

2 1 2 2

1

2 2 2 1 2 2

/ ( , ) / ( , ) ( , )
1 1.

/ ( , ) / ( , ) / (0, ) (0, )c

w f w y y f w y f w y

w f w y w f w y y f y f y





 

  

−

− −

    
− = = −

      −  
 

We note that the income effect relative to the substitution effect can be expressed by a simple 

formula provided the Box-Cox parameter   has been estimated. When 1 =  the formula in 

(7.14) reduces to 

(7.15)      2 2

2 2

log / log ( , )
1 1.

log / log (0, )c

w f w y

w f y



−

 
− = −


 

The relation in (7.15) shows that even when utility is linear in disposable income the income 

effect is still different from zero if taxes are non-linear. If husband and wife are taxed separately, 

then 
2 2(0, ) ( , ),f y f w y =  implying that in this case the income effect vanishes. 

 

8. Conclusions 

In this paper we have discussed marginal compensated effects in discrete choice models and 

established an aggregate Slutsky equation (discrete Slutsky equation) for such models. We have 

shown that an earlier analysis of marginal compensated effects is incomplete and incorrect. The 

discrete Slutsky equation has the (asymmetric) property that the marginal compensated price 

effects in the case of a price increase may differ from the marginal compensated price effects 

in the case of a price decrease, Moreover, we have discussed why the discrete Slutsky equation 

is asymmetric. As we have demonstrated by discussing selected examples, the discrete Slutsky 
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equation is very practical to use provided that the systematic part of the utility function has been 

estimated.  
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Appendix  

Proofs 

Before we give the proofs of the theorems above we need the following lemma.  

 

Lemma 1 

      Let ( , ) ( , ) ,j j j j j j jU p y v p y v = + = + 1,2,..., ,j m=  where the random terms 

1 2( , ,..., )m    have joint c. d. f. F and deterministic terms { ( , )}j jv p y  that are strictly monotone 

in jp  and strictly increasing in y. Let p  be the vector of ex post prices. Let 

( ) max( , ( , ))j j j jz v v p z =  and let jy be determined by ( , ).j j j jv v p y=  Then  

(i)         (max ( , ) ( , ) max ( , ) ( , ) , )r r r j j r r r jk k k jk jkP U p y U p y U p Y U p Y du Y dz= = =      

              1 2 2( ( ), ( ),.. ( )) ( , )jk m k kF u z u z .,u z v p z dudz   = − − −  

for j ky z y ,  ,k j  and  

(ii)        (max ( , ) ( , ) max ( , ) , )r r r j j r r r jj jj jP U p y U p y U p Y du Y y= =  =   

               1( ( ),..., ,..., ( ))j j j m jF u y u v u y du. = − − −  

 

Proof of Lemma 1: 

Consider first the proof of (i). Let J  and J denote the ex ante and ex post choice given that the 

ex-ante and ex post utility levels of the chosen alternatives are equal. For notational 

convenience, let ( , )r r rU U p y=  and ( ) ( , ).r r rU Y U p Y=  For j k  we have that 

                   { , }{ , } {max ,max ( ) }.r j k r j r k r jk jJ j J k U U U Y U = =      

For alternative j to be the most preferred alternative ex ante and alternative k the most preferred 

alternative ex post, one must have ( ) ,k jk j kU Y U U=   which implies that .jk kY y  

Furthermore, since alternative k is the most preferred one ex post, ( ) ( ),k jk jU Y U Y  which 

implies that ( )j jk jU Y U  and .jk jY y  Accordingly, the event { , }J j J k= =  has positive 

probability only if .j ky y  Moreover, the event { ( ) }k jU z U=  implies that 

{ ( ) , }.j j k jU z U U U 
 Accordingly, the relation above yields 

   { , }{ , , } {max max( , ( )) ( )}.jk r j k r r j kJ j J k Y z U U z U U z= = =   =  

Thus, the corresponding probabilities are therefore given by 
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 ( , , [ , ), ( ))jk jP J j J k Y z z z U u,u u= =  +  +  

(max ,max ( ) ( ), ( , ), ( , )) ( )r j r r k r jk k jk jk jP U u U Y U Y Y z z z U u u u o u z =    +  + +    

(max ,max ( ) , ( ) ( ), ( , )) ( )r j r r k r k k jP U u U z u U z u U z z U u u u o u z =     +  + +      

{ , }(max max( , ( )) , ( ) ( ), ( , )) ( )r j k r r l k jP U U z u U z u U z z U u u u o u z=    +  + +    

{ , }(max ( ( ) ) , ( ) ( ), ( , )) ( )r j k r r k k jP z u U z u U z z U u u u o u z = +    +  + +    

1 2( ( ), ( ),..., ( )) ( )j mF u z u z u z u o u z  = − − −  +     

 
1 1( ( ),..., ( ),..., ( ))k mF u z u z z u z u  − − − + −   

1 2 2( ( ), ( ),..., ( )) ( , ) ( ).jk m k kF u z u z u z v p z u z +o z u   = − − −      

This proves (i) of Lemma A1. Consider now the second part (ii). We have that 

  (max max ( ) ( , ), )r j r j r j r jj jj jP U U U Y u u u Y y    + =  

  (max max ( ) ( , ))r j r j r j r jP U U U y u u u =    +  

  (max ( ( )) ( , ))r j r r j j jP y v u u u  = +  +  +   

  1( ( ),..., ,..., ( )) ( )j j j m jF u y u v u y u+o u , = − − −    

which proves the second part. 

                    Q. E. D. 

Proof of Theorem 1:   

Recall that  

 
1 2 1 2( , ,..., ) ( max ( )) ( , ,.., ) .j m j j r r r j mH v v v P v v F u v u v u v du 



−

  + = + = − − −  

From (i) in Lemma 1 (with the same notation as in Lemma 1) it follows that 

(A.1)  ( , , [ , ))jkP J j J k Y z z z= =  +  

     
2 1( ) ( ( ), ( ),..., ( ))k k jk k k mv p ,z z F u z u v p ,z u z du 



−

 =  − − −  

     2 1( , ) ( ( ), ( ),..., ( )) ( ).k k jk k k mv p z zH z v p ,z z o z  = −  +    

Evidently, differentiation under the integral above is allowed in this case. Furthermore, since 

alternative j is chosen ex ante and alternative k ex post it must be the case that 

( , ) ( , )j j j j jkU p y U p Y  and ( , ) ( , )k k jk k kU p Y U p y  implying that ( , ) ( , )j j j j jkv p y v p Y  and 

( , ) ( , ).k k jk k kv p Y v p y  Hence, it must be true that the probability in (A.1) vanished unless 
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.k jy z y   By integrating (A.1) with respect to z between 
ky  and jy  yields (4.3). The relation 

in (4.4) follows from Lemma 1 (ii).  

                                    Q. E. D. 

Proof of Theorem 2: 

Recall that ( )r rv w , y  is strictly decreasing in prices and strictly increasing in income. Assume 

first that the price of alternative j increases from jp  to j j jp p p= +   where jp  is small and 

positive. Then, ( )j jy p y  and 
ry y=  for .r j  Hence, it follows from Lemma 1 that 

( , ) 0cQ r j =  for .r j  Furthermore, from the definition of ( )j jy p  it follows that 

( , ( )) ( , ).j j j j j jv p y p v p y=  Implicit differentiation of the latter equation with respect to u yields 

(A.2)  
1 1

2 2

( ) ( , )
.

( , )

j j j j j

j

j j j j

y p v p y v
y

p v p y v

 
= = − = −

 
 

Since ,jy y  max ( ( , ), ( , )) ( , )r r r r r j r r jv p y v p y v p y=  and we get from Lemma 1, (2.4) and (A.2) 

that 

(A.3)          ( , ) ( , )c c

j j

r

Q r j Q j j − = −   

    1 1 2 2 1 1 2 2( ( , ), ( , ),..., ( , ),..., ( , )) ( ( , ), ( , ),..., ( , ))j j j j j m m j j m mH v p y v p y v p y v p y H v p y v p y v p y = −  

    
1 1 2 2 2( ( , ), ( , ),..., ( , ),..., ( , )) ( , ) ( )j jr j j m m r r j j

r j

y H v p y v p y v p y v p y v p y p o p


  =  +        

      
1 1 2 2( ( , ), ( , ),..., ( , ))j j m m jy H v p y v p y v p y p

y

  
=


 

 1 1 2 2 2( ( , ), ( , ),..., ( , )) ( , ) ( )j jj m m j j j jy H v p y v p y v p y v p y p o p  −  +   

        1 1 2 2 1 1 2 2( ( , ), ( , ),..., ( , )) ( ( , ), ( , ),..., ( , ))j m m j j j m m j

j

H v p y v p y v p y y p H v p y v p y v p y p

y p

     
= +

 
 

          
1

2

)  ( ) ( ) (
j j j j j

j j j j j j

j j j

v
o p y p o p p o p

p y p v y

         
+  = +   +  = −   +             

  

  ( ).
j j

j j j

j

x p o p
p y

   
= +   +     

  

Since 

  
0

( , )
lim

j

cc

jj r

p
j j

Q r j

p p

+

 →

 −
=  

   


 

the first part of the theorem follows from (A.3).  
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             Consider next the corresponding cross price effects. That is, we consider the marginal 

compensated effect on the choice of alternative j when the price of alternative k increases where 

.k j  We have that ( , ) 0cQ r j =  for r k  and ( , ) 0.cQ k j   From Theorem 1 we obtain that 

(A.4)            

( )

1 2 2( , ) ( ( ), (z),.., ( )) ( , )
k ky p

c

kj m j k

y

Q k j H z z v p z dz   = −   

which together with (A.2) and the Mean value theorem imply that  

(A.5)         
1 1 2( , ) ( ( , ),..., ( , )) ( , )( ( ) ) ( )c

kj m m j j k k kQ k j H v p y v p y v p y y p y o p = − − +      

       = 1 1 2

1

( ( , ),..., ( , )) ( , )( ( ) )
( )

( , )

j m m j j k k

k

k k k

H v p y v p y v p y y p y
o p

v p y p

  −
− + 

 
   

       2 2

1 2

( , ) ( , )( )
( ) ( ).

( , ) ( , )

j j k j j j kk k k
k k

k k k k k k k

v p y v p y py p p
o p o p

p v p y p p v p y

     
= −   +  =  + 

   
     

Since jy y=  and ( ) max( ( , ), ( , )) ( , ),k j k k k k k ky v p y v p y v p y = =  it follows from Theorem 1 

that  

(A.6)  ( , ) .c

jQ j j =   

From (A.4) and (A.5) it thus follows that  

      
2

0 0
2

( , ) ( , ) ( , )( , )
lim lim .

( , )k k

c c c c
j j j j j

p p
k k k k k k

Q k j Q j j v p yQ k j

p p p p v p y

  +

 →  →

  + − 
= = =        

    

            Consider next the marginal compensated own price effect in the case when 0.jp   

Then it follows that jy y  so that ( ) ( )r j r ry v p , y =  for all r, implying that ( , )c

jQ j j =  

according to Theorem 1. Furthermore, from Theorem 1 and the Mean value theorem we get, for 

some ( , )jz y y  that  

                       
1 2 2( ) ( ( ), ( ),..., ( )) ( , )( ( )) ( )c

rj m j j j j jQ r, j H z z z v p z y y p o p      = − − +   

      1 1 2 2 2 2 2( ( , ), ( , ),..., ( , )) ( , )( ( )) ( )rj j j j j jH v p y v p y v p y v p y y y p o p = − − +    

     1 1 2 2 2( ( , ), ( , ),..., ( , )) ( , ) ( ) ( )rj m m j j j j j jH v p y v p y v p y v p y p y p o p  =  +    

     2 1

1 1 2 2

2

( , ) ( , )
( ( , ), ( , ),..., ( , )) ( )

( , )

j j j j j

rj m m j

j j

v p y p v p y
H v p y v p y v p y o p

v p y

 
= − + 


 

     1 1 2 2 1( ( , ), ( , ),..., ( , )) ( , ) ( ).rj m m j j j jH v p x v p y v p y p v p y o p = −  +   

Consequently, we obtain that  

                     ( , ) ( , )c c

j

r r j

Q r j Q r j


− =    
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     1 1 2 2 1( ( , ), ( , ),..., ( , )) ( , ) ( )rj m m j j j j

r j

H v p y v p y v p y p v p y o p


 = −  +   

     ( ) ( )
jk

j j j j

k j j j

p o p p o p
p p






= −  +  =  + 

 
   

which implies that  

  .

c

j j

j jp p

 − 
=

 
  

      Finally, consider the marginal compensated cross price effect when 0.kp   In this case 

we get from Theorem 1 that ( , ) 0cQ k j =  when ,k j  and 

      
1 1 1 1 1 1( , ) ( ( , ),..., ( , ), ( , ), ( , ),..., ( , )).c

j k k k k k k m mQ j j H v p y v p y v p y v p y v p y− − + +
=   

because .jy y=  Therefore, we get that 

       ( , ) ( , )c c

j j

r

Q r j Q j j − = −   

       1 1( ( , ),..., ( , ),..., ( , )) .j j k m m jH v p y v p y v p y = −    

By first order Taylor expansion the last expression becomes    

                       
1 1 2 2 1( ( , ), ( , ),..., ( , )) ( , ) ( ) ( )

j k

jk m m k k k j k

k

p
H v p y v p y v p y v p y p o p o p

p

 
   +  = + 


 

which implies that   

.

c

j j

k kp p

 − 
=

 
          

                            Q. E. D. 
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