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Abstract: When estimating local average and marginal treatment e�ects using instrumental variables

(IV), multivalued endogenous treatments are frequently binarized based on a speci�c threshold in treatment

support. Such binarization introduces a violation of the IV exclusion if (i) the IV a�ects the multivalued

treatment within support areas below and/or above the threshold and (ii) such IV-induced changes in the

multivalued treatment a�ect the outcome. We discuss assumptions that satisfy the IV exclusion restriction

with a binarized treatment and permit identifying the average e�ect of (i) the binarized treatment and

(ii) unit-level increases in the original multivalued treatment among speci�c compliers. We derive testable

implications of these assumptions and propose tests, which we apply to the estimation of the returns to

college graduation instrumented by college proximity.

Keywords: Instrumental variable, LATE, binarized treatment, exclusion restriction.

JEL classi�cation: C12, C21, C26.

We have bene�ted from comments from John Marshall, participants at EEA-ESEM 2018, seminar participants at the

internal research seminars at Statistics Norway and the Department of Economics of the University of Fribourg in Saas-Fee.

Andresen acknowledges funding from the Norwegian Research Council, grant no. 237840. Addresses for correspondence:

Martin Eckho� Andresen, Statistics Norway, Akersveien 26, 0177 Oslo, Norway; martin.andresen@ssb.no. Martin Huber,

University of Fribourg, Bd. de Pérolles 90, 1700 Fribourg, Switzerland; martin.huber@unifr.ch.



1 Introduction

Instrumental variables (IV) strategies are frequently applied in empirical economics to overcome

the endogeneity of a treatment variable, whose causal e�ect on some outcome variable is of

interest to researchers and policy makers. In general, an instrumental variable needs to satisfy

relevance and monotonicity conditions, meaning that it monotonically shifts the treatment,

as well as validity: The IV must not be associated with treatment-outcome confounders and

not directly a�ect the outcome other than through the treatment, which is known as the IV

exclusion restriction. For binary treatment variables, the IV assumptions allow identifying

the local average treatment e�ect (LATE) on the compliers, whose treatment switches as a

function of the instrument (Imbens and Angrist, 1994), or the marginal treatment e�ect (MTE)

(Heckman and Vytlacil, 2001, 2005).

For multivalued treatments the instrument identi�es a weighted average of e�ects of unit

changes in the treatment on several complier groups de�ned in terms of treatment-instrument

reactions across the support of the treatment. Unfortunately, the size of the e�ects of unit changes

in the treatment are unidenti�ed and the complier groups might be overlapping, see Angrist and

Imbens (1995). In practice, multivalued treatments are therefore often binarized based on a speci�c

threshold in the support that appears interesting from a policy perspective, such as whether or

not a defendant is incarcerated or not (Bhuller et al., 2020; Loe�er, 2013; Aizer and Doyle, 2015),

while the multivalued treatment could perceivably be the length of the prison sentence. As another

example, rather than considering years of schooling and aiming at evaluating a weighted average

e�ect of a one year increase in schooling among heterogenous complier groups, one might prefer

analyzing a binary indicator for college education for compliers who are induced to �nish college

by the instrument.

Binarization of treatments are also tempting when analyzing the MTE, i.e. the average e�ect

on those who are indi�erent between taking and not taking a binary treatment for a speci�c level

of unobserved resistance to treatment, a framework which requires a binary treatment indicator.
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Accordingly, studies estimating MTEs commonly make use of binarized versions of originally

multivalued treatments. For instance, Carneiro et al. (2017) evaluate the e�ects of upper secondary

schooling (rather than years of education) using distance to school as instrument. For further

examples, see Carneiro et al. (2011); Cornelissen et al. (2018); Felfe and Lalive (2018).

As formally discussed in this paper and also pointed out in Angrist and Imbens (1995), bina-

rizing multivalued treatments generally entails a violation of the IV exclusion restriction.1 Specif-

ically, the violation occurs if (i) the IV a�ects the multivalued treatment within support areas

below and/or above the threshold for binarization and (ii) such IV-induced changes in the multi-

valued treatment a�ect the outcome. In cases where the exclusion restriction holds for the bina-

rized treatment, the identi�ed parameter generally includes the e�ects of any instrument-induced

shifts in the original treatment variable among compliers whose treatment is induced to cross the

threshold by the instrument, rather than the e�ect at the threshold only.

As a methodological contribution, we show that part (i) of the violation of the exclusion

restriction has testable implications when the original treatment variable prior to binarization is

observed. A necessary (but not su�cient) condition for ruling out `o�-threshold' compliance, i.e.

that the IV a�ects the multivalued treatment within support areas below or above the threshold,

is a particular �rst stage condition. When binarizing the treatment at alternative values across its

support, the �rst stage e�ect of the instrument must weakly increase up to the threshold chosen

by the researcher, and weakly decrease thereafter. This can be tested in a moment inequality

framework, see for instance Andrews and Shi (2013). Testing within cells of control variables or

even the outcome may improve power, because violations of the �rst stage conditions in subgroups

may be averaged away in the whole sample, as we show in the empirical example.

Furthermore, we consider two special cases of this �rst stage condition, �rstly, that all compliers

are situated at the threshold and secondly, that aøø compliers are situated at extreme values of

the multivalued treatment. We show that both conditions allow identifying average e�ects of unit

changes in the treatment for a well de�ned complier group (rather than an average of several

1For a related discussion, see Imbens and Rubin (2015), who discuss that the stable unit treatment valuation
assumption requires the treatment level not to be coarsened when de�ning potential outcomes.
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heterogeneous complier groups) and that the conditions can be tested by means of standard F -

tests. We apply our tests to labor market data from the National Longitudinal Survey of Young

Males (NLSYM) as analysed in Card (1995). We consider an indicator for graduating from a 4

year college as our binarized education treatment, where a dummy for proximity to college serves

as instrument. Both special cases are soundly rejected, although it should be mentioned that our

tests rely on the validity of the instrument for the underlying multivalued treatment. Furthermore,

the moment inequality tests suggest that the exclusion restriction might be violated altogether

for the binarized treatment.

Marshall (2016) discusses the bias due to binarizing the treatment in the LATE framework,

coining the term coarsening bias. Assuming that IV-induced changes in the multivalued treatment

a�ect the outcome only (but not at o�-threshold margins), he shows how the instrument identi�es

the average e�ect of a unit increase in the multivalued treatment at the threshold among compliers.

This allows pinpointing the treatment e�ect of an instrument-induced shift in treatment from right

below to right above the threshold. In contrast, we demonstrate that a causal e�ect of a binarized

treatment is identi�ed even when permitting o�-threshold compliers, as long as the threshold

captures all compliers in the population. This allows identifying a causal e�ect under weaker

assumptions than Marshall (2016), which, however, includes treatment e�ects of any o�-threshold

shifts for threshold-crossing compliers that are induced to increase their treatment by more than

one level. In addition, this paper appears to be the �rst one to propose testing approaches in the

context of binarized treatments.

Burgess and Labrecque (2018) point out potential violations of the exclusion restriction when

binarizing a multivalued treatment in the context of Mendelian randomization, in which genetic

variants are used as instruments. We provide a formal discussion using the potential outcome

framework. Even though framed in the IV context, we note that the conditions and methods for

testing o�-threshold compliance can also be applied in other contexts to check if some variable

exclusively a�ects speci�c margins of a treatment, conditional on monotonicity and exclusion for

the original treatment. For instance, one could test whether a labor market policy only a�ects
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the extensive or also the intensive margin of labor supply.

Our paper relates to a growing literature on testing the assumptions for the nonparametric

identi�cation of the LATE with binary treatments, that also applies to binarized treatments. Balke

and Pearl (1997) derive testable constraints whose violation would imply a negative density of

compliers for some value of a binary outcome, even though the lower theoretical bound of densities

is zero. Heckman and Vytlacil (2005) generalize these constraints to the continuous outcome case.

Kitagawa (2015) proposes a test of the constraints in a moment inequality framework based on

resampling variance-weighted Kolmogorov-Smirnov-type statistics on the supremum of violations.

Mouri�é and Wan (2017) suggest an alternative test that allows controlling for covariates in a

user-friendly way.

Huber and Mellace (2015) show that the LATE assumptions imply an alternative set of con-

straints related to the mean outcomes of non-compliers whose treatment does not react to the

instrument. Like most other tests in the literature, this test checks necessary, but not su�cient

conditions for instrument validity. That is, the tests are inconsistent in the sense that there may

exist data generating processes which satisfy the constraints, but nevertheless violate the LATE

assumptions. Sharma (2016) o�ers an extension by determining the likelihood that the LATE

assumptions hold when the testable constraints are satis�ed. Speci�cally, the test de�nes classes

of valid causal models satisfying the LATE assumptions as well as invalid models and compares

their marginal likelihood in the observed data. As an alternative strategy, Slichter (2014) suggests

testing conditional IV validity by �nding covariate values for which the instrument has no �rst

stage and checking whether the instrument is still associated with the dependent variable.

Our tests di�er from this and the previously mentioned approaches in that it exploits informa-

tion in a multivalued treatment prior to binarization, rather than in conditional means or densi-

ties of the outcome. We therefore propose a further approach for testing IV validity in cases where

the binary treatment was generated from a variable with richer support. Because the tests in the

literature generally tests necessary, but not su�cient conditions for instrument validity, failure to

reject the null for these tests cannot prove the validity of the exclusion restriction. Our test can
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thus potentially reject instrument validity in some cases where the test in e.g. Kitagawa (2015)

cannot.

In the presence of both a binary and a continuous instrument, Dzemski and Sarnetzki (2014)

suggest a nonparametric overidenti�cation tests for IV validity. In contrast, our approach does

not require a second IV. Finally, if outcome variables are observed in periods prior to instrument

assignment, placebo tests based on estimating the e�ect of the instrument on pre-instrument

outcomes may be performed to check the plausibility of IV validity. Our tests do not rely on the

availability of pre-instrument outcomes.

For the multivalued treatment case, Angrist and Imbens (1995) discuss the testable

constraint that the cumulative distribution functions of the treatment in the groups receiving

and not receiving the instrument must not cross (stochastic dominance), as this would point to a

violation of monotonicity, conditional on IV validity. Fiorini and Stevens (2014) point out that

testing this necessary condition can also have power against violations of IV validity, conditional

on monotonicity. Our framework is di�erent in that we assume that the IV relevance and validity

assumptions hold for the original multivalued treatment, but not necessarily for the binarized

treatment, for which we test the exclusion restriction. It is important to emphasize how our test

utilize other moments of the data than other tests of instrument validity in the literature, and

thus may strengthen the plausibility of IV validity even when other tests does not reject.

This paper proceeds as follows. Section 2 introduces the econometric framework, presents

minimum assumptions for IV to identify a causal e�ect of a binarized treatment and discuss the

interpretation of this parameter. Section 3 discusses testable implications of the assumptions along

with testing approaches. Section 4 presents an application to data from the NLSYM. Section 5

concludes.2

2Appendix A presents a brief simulation study illustrating how conditioning on the outcome in the tests may
increase power.
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2 Econometric framework and assumptions

We denote by D a multivalued treatment variable that is ordered discrete, D ∈ {0, 1, ..., J} with

J + 1 being the number of possible treatment doses. An example is years of education. Y denotes

the (discrete or continuous) outcome on which the e�ect ought to be estimated, for instance

earnings in the labor market later in life. Under endogeneity, unobserved factors a�ect both D

and Y such that treatment e�ects cannot be identi�ed from simple comparisons of di�erent levels

of the treatment. One possible solution is the availability of an instrumental variable (IV), denoted

by Z, which is relevant in the sense that it in�uences D and valid in the sense that it does not

directly a�ect the outcome and is not associated with unobserved factors in�uencing the outcome.

For the formal discussion of the identifying assumptions and testable implications, we use

the potential outcome framework, see for instance Rubin (1974). Denote by Dz the potential

treatment state that would occur if the instrument Z was exogenously set to some value z, and

by Yd the potential outcome with the treatment exogenously set to some value d in the support of

D. We will henceforth assume a binary instrument (Z ∈ {1, 0}), which simpli�es the exposition.

but discuss a straightforward extension to a continuous or multivalued instrument at the end of

Section 3.

The starting point for our analysis is the standard IV assumptions for heterogeneous treat-

ment e�ect models, which will be maintained throughout the paper:

Assumption 1 (IV validity and relevance):

(a) Z⊥(D1, D0, Y0, Y1, ..., YJ) (IV independence).

(b) Pr(D1 ≥ D0) = 1 and Pr(D1 > D0) > 0 (positive monotonicity).

where �⊥� denotes independence. Assumption 1(a) implies two conditions. First, the instrument

must be random so that it is unrelated to factors a�ecting the treatment and/or outcome. There-

fore, not only the potential outcomes and treatment states, but also the types, which are de�ned

by the joint potential treatment states, are independent of the instrument. Second, Z must not

have a direct e�ect on Y other than through D, i.e., satisfy an exclusion restriction, which can
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be seen from the fact that the potential outcomes are only de�ned in terms of d rather than z

and d.3 The �rst part of Assumption 1(b) implies that the treatment of any individual does not

decrease in the instrument. The second part assumes the existence of individuals whose treatment

state positively reacts to the treatment. Both parts together imply a positive �rst stage e�ect of

the instrument on the treatment: E(D|Z = 1) − E(D|Z = 0) > 0. We note that Assumption

1(b) could be replaced by negative monotonicity: Pr(D1 ≤ D0) = 1 and Pr(D1 < D0) > 0. From

an econometric perspective, both versions are equivalent, because when rede�ning the instrument

under negative monotonicity to be 1− Z, Assumption 1(b) is satis�ed.

If D was binary, the local average treatment e�ect (LATE) on the so-called compliers, who

switch treatment from 0 to 1 as a response to a switch in the instrument from 0 to 1, could be

identi�ed by the probability limit of two stage least squares (TSLS) or the Wald estimator, see

Imbens and Angrist (1994). That is, under Assumption 1 andD ∈ {0, 1}, E[Y1−Y0|D1−D0 = 1] =

E(Y |Z=1)−E(Y |Z=0)
E(D|Z=1)−E(D|Z=0) . For a multivalued treatment, however, the causal e�ect for a single complier

population de�ned by speci�c potential treatment states, e.g. for those increasing treatment from

1 to 2 when the instrument is switched from 0 to 1, is not identi�ed. Angrist and Imbens (1995)

show for ordered discrete treatments that it is merely possible to identify a weighted average of

causal e�ects of unit increases in the treatment, Yj −Yj−1, j ∈ {1, ..., J}. Speci�cally, the authors

show in the proof of their Theorem 1 that under Assumption 1,

E(Y |Z = 1)− E(Y |Z = 0)

E(D|Z = 1)− E(D|Z = 0)
=

J∑
j=1

wj · E(Yj − Yj−1|D1 ≥ j > D0) = ∆w, (1)

where the weights are given by

wj =
Pr(D1 ≥ j > D0)∑J
j=1 Pr(D1 ≥ j > D0)

. (2)

Note that 0 ≤ wj ≤ 1 and
∑J

j=1wj = 1. Therefore, the probability limits of TSLS or the Wald

3To make these two aspects explicit, Assumption 1(a) may be postulated as two conditions, see Angrist et al.
(1996): (i) Z⊥(D1, D0, Y1,0, Y0,0, Y1,1, Y0,1, ..., Y1,J , Y0,J) and (ii) Y1,d = Y0,d = Yd for all d in the support of D
(exclusion restriction), where Yz,d denotes a potential outcome de�ned in terms of both the instrument z and the
treatment d.
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estimator equal a weighted average of e�ects of unit changes in the treatment on heterogeneous

complier groups de�ned by di�erent margins of the potential treatments. However, the various

treatment e�ects based on unit changes, E(Yj − Yj−1|D1 ≥ j > D0), remain themselves uniden-

ti�ed. Furthermore, the complier groups might be overlapping. Some individuals could, for in-

stance, satisfy both (D1 ≥ j > D0) and (D1 ≥ j+ 1 > D0) for some j and therefore be accounted

multiple times.

In order to analyze the e�ects of a particular margin of treatment, many empiricists explicitly

or implicitly binarize the multivalued treatment. Examples include the assessment of the e�ects

of a binary indicator for college attendance, instrumented for instance by college proximity (Kane

and Rouse, 1993; Carneiro et al., 2011), of fertility measured by a dummy for having three or

more children, instrumented by same-sex sibship or twin births (Angrist and Evans, 1998; Black

et al., 2005; Mogstad and Wiswall, 2016) and dummies for incarceration, release or disability

bene�t receipt in the judge leniency literature (Dobbie et al., 2018; Bhuller et al., 2020; Dahl

et al., 2014)4. Binarization is also common in the literature on the MTE, a parameter that can

be regarded as the limit of the LATE for an in�nitesimal change in the instrument. See Carneiro

et al. (2017, 2011); Cornelissen et al. (2018); Felfe and Lalive (2018) for examples in the context

of returns to upper secondary school, college, and child care, respectively.

Let the binarized treatment measure D∗z = I{Dz ≥ j∗} denote the potential state of the

binarized treatment under z ∈ {0, 1}, where I{a} is the indicator function that is equal to one

when a holds and zero otherwise. j∗ denotes a speci�c threshold value in the support of D. When

practitioners analyze these binarized treatments, it is usually not clear what target parameter

they have in mind, and the resulting estimate is often interpreted as if the treatment was truly

binarized. In contrast, the causal parameter of interest that can be identi�ed under minimal

assumptions in this setting can be de�ned as the average e�ect among those whose treatment

state passes through the threshold when switching the instrument from 0 to 1:

4Bhuller et al. (2020) provides estimates of the e�ect of judge stringency on binary dummies for prison sentence
exceeding di�erent thresholds in their appendix �gure B3. These correspond to the βj coe�cients from this paper.
We provide a formal testing framework for instrument validity in this setting.
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∆∗ = E[YD1 − YD0 |D∗1 −D∗0 = 1] = E[YD1 − YD0 |D1 ≥ j∗ > D0] (3)

=
J∑
j=1

E[Yj − Yj−1|D1 ≥ j > D0, D1 ≥ j∗ > D0] · Pr(D1 ≥ j > D0|D1 ≥ j∗ > D0),

The expression following the second equality in (3) shows that ∆∗ is a weighted average of

e�ects among compliers satisfying D∗1 −D∗0 = 1, even though they could be de�ned by di�erent

potential (original) treatment states D0, D1. That is, the e�ect refers to all compliers satisfying

D1 ≥ j∗ > D0, no matter how heterogeneous they are in terms of D1 and D0, which is important

for interpretation. This di�ers from the parameter of interest in Marshall (2016), the e�ect of

a unit change in the treatment at the threshold based on switching from j∗ − 1 to j∗ among

compliers, which is more challenging to identify. In contrast, our parameter of interest represents

a weighted average of all treatment e�ects for compliers induced to cross j∗ by the instrument, not

only the treatment e�ect at the threshold j∗. Rather, it comprises the e�ects of various treatment

shifts from some level below j∗ to some level greater than or equal to j∗ for all compliers induced

to cross j∗. Although practitioners could be interested in the e�ect of the last unit of treatment

that makes an individual cross the threshold, as in Marshall (2016), this is fundamentally harder

to identify than ∆∗, which is also analogous to a parameter identi�ed by comparing individuals

above and below a treatment cuto� using OLS in the absence of a selection problem.

In the context of returns to college investigated in the empirical application in Section 4, the

interpretation of ∆∗ is the average causal e�ect on wages of the extra education obtained by

people induced to get college or more by the instrument. This is in contrast to the parameter in

Marshall (2016), which is harder to identify, but captures the causal e�ect of the very last year of

college for people induced to �nish by the instrument.

∆∗ generally di�ers from ∆w identi�ed in (1). The latter identi�es an average e�ect of unit

changes. The former corresponds to a total e�ect, i.e. the sum of e�ects of unit changes that

are weighted with the probability that they occur among compliers crossing the threshold as
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a response to the instrument. As a matter of fact frequently disregarded by empiricists, ∆∗ is

generally not identi�ed by the probability limit of the Wald estimator or TSLS based on D∗ rather

than D,

WD∗ =
E(Y |Z = 1)− E(Y |Z = 0)

E(D∗|Z = 1)− E(D∗|Z = 0)
. (4)

This is the case despite of the supposed analogy of (4) to the results of Angrist and Imbens (1995)

for a (truly) binary treatment. However, a binarization of the treatment variable generally entails

a violation of the exclusion restriction such that Assumption 1a for D does not carry over to D∗.

To see this, rewrite the numerator of (4) using the law of total probability and Assumption

1(b) as

E(Y |Z = 1)− E(Y |Z = 0)

=
J∑
j=1

E[Yj − Yj−1|D1 ≥ j > D0] · Pr(D1 ≥ j > D0)

=
J∑
j=1

E[Yj − Yj−1|D1 ≥ j > D0, D1 ≥ j∗ > D0] · Pr(D1 ≥ j > D0, D1 ≥ j∗ > D0) (5)

+

J∑
j=1

E[Yj − Yj−1|D1 ≥ j > D0, I{D1 ≥ j∗ > D0} = 0] · Pr(D1 ≥ j > D0, I{D1 ≥ j∗ > D0} = 0).

By summing over j, (5) simpli�es to

E(Y |Z = 1)− E(Y |Z = 0)

= E[YD1 − YD0 |D1 ≥ j∗ > D0] · Pr(D1 ≥ j∗ > D0)

+ E[YD1 − YD0 |D1 > D0, I{D1 ≥ j∗ > D0} = 0] · Pr(D1 > D0, I{D1 ≥ j∗ > D0} = 0). (6)

Note that the condition (D1 > D0, I{D1 ≥ j∗ > D0} = 0) captures complier groups whose

treatment reacts to the instrument (D1 > D0), but in a way that it does not cross the threshold
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j∗ (I{D1 ≥ j∗ > D0} = 0). Furthermore, consider the denominator of (4):

E(D∗|Z = 1)− E(D∗|Z = 0)

= Pr(D ≥ j∗|Z = 1)− Pr(D ≥ j∗|Z = 0) = Pr(D1 ≥ j∗)− Pr(D0 ≥ j∗)

= Pr(D1 ≥ j∗ > D0) + Pr(D0 ≥ j∗)− Pr(D0 ≥ j∗)

= Pr(D1 ≥ j∗ > D0) (7)

where the second equation follows from Assumption 1(a) and the third from 1(b). Division of (6)

by (7) reveals that WD∗ does generally not identify ∆∗ due to the second line in (6). The latter

corresponds to the contribution of compliers whose treatment is not induced to cross j∗ by the

instrument. For this reason, the parameter of interest ∆∗ is only obtained in the special cases

that either such o�-threshold compliers do not exist or that their average treatment e�ect is zero,

as formalized in Assumptions 2 and 3.

Assumption 2 (zero average treatment e�ect among non-captured compliers):

E[YD1 − YD0 |D1 > D0, I{D1 ≥ j∗ > D0} = 0] = 0.

Assumption 3 (full capturing of compliers by threshold):

Pr(D1 > D0 ≥ j∗) = Pr(j∗ > D1 > D0) = 0.

Assumption 2 postulates the absence of an average causal e�ect for compliers not captured

by the threshold. That is, given a �rst stage not `going through' j∗, the average second stage for

these compliers must be zero. A related condition has been considered by Marshall (2016) (see

his Assumption 5∗), requiring that at any treatment level j 6= j∗, E(Yj |D1 = j,D0 = j − 1) =

E(Yj−1|D1 = j,D0 = j − 1). Note that our Assumption 2 only requires this for (o�-threshold)

compliers whose multivalued treatment is not induced to cross j∗ by the instrument, a considerably

weaker condition.

Assumption 3, which can be alternatively formalized as Pr(I{D1 ≥ j∗ > D0} = 0|D1 > D0) =

0, implies that all compliers are captured by the threshold in the sense that their treatment state
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is shifted from some D0 < j∗ to some D1 ≥ j∗ by the instrument. Thus, there exist no complier

groups whose treatment is a�ected by instrument in a way that D0, D1 are either both below or

both above the threshold. This rules out �rst stages not `going through' the threshold j∗. We note

that this assumption is weaker than Pr(D1 ≥ j > D0) = 0 for j 6= j∗, as considered in Marshall

(2016) (and imposed in Assumption 4 below): Assumption 3 permits the multivalued treatment to

react to the instrument at di�erent margins than (exclusively) j∗, as long as any treatment shifts

cross the threshold. Summing up, the IV exclusion restriction fails with binarized treatments if (i)

there exist compliers not captured by the de�nition of D∗ and (ii) the instrument-induced changes

in treatment a�ects the outcome of these subjects.

In contrast, if either Assumption 2 or 3 hold,

E(Y |Z = 1)− E(Y |Z = 0) = E[YD1 − YD0 |D1 ≥ j∗ > D0] · Pr(D1 ≥ j∗ > D0), (8)

such that WD∗ = ∆∗. Considering the expression after the �rst equality in (5) reveals that

identi�cation is also obtained by combinations of Assumptions 2 and 3 for di�erent subsets of

compliers not captured by D∗. For instance, Assumption 3 could hold below the threshold,

securing no compliers in this region, while Assumption 2 could hold above the threshold, securing

no treatment e�ects among these compliers.5 If neither Assumption 2 nor 3 hold, it follows

from (6) that the direction of the bias in WD∗ is determined by the direction of the average

treatment e�ect among o�-threshold compliers. Unfortunately, imposing the popular monotone

treatment response (MTR) assumption of Manski and Pepper (2000), which implies that the

treatment e�ect goes in the same direction for both threshold and o�-threshold compliers, does

not permit bounding the absolute size of ∆∗. On the contrary, MTR implies that WD∗ overstates

(understates) ∆∗ whenever it is positive (negative).

We subsequently discuss two special cases of Assumption 3 for the reason that they allow

5A last possibility for identi�cation is the knife-edge case where there exist o�-threshold compliers with non-
zero e�ects of the IV-induced changes in treatment, but where these sum to 0, as pointed out by Marshall (2016).
Formally,

∑
j0 6=j∗−1

∑J
j1=j0+1E[Yj1 − Yj0 |D1 = j1, D0 = j0] Pr(D1 = j1, D0 = j0) = 0. This requires treatment

e�ects to go in opposite direction at various levels. We doubt any practitioner would rely on this for identi�cation.
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identifying ∆w, the weighted average e�ect of unit changes in the treatment, based on WD∗ . To

this end, rewrite the nominator of (4) as

E(Y |Z = 1)− E(Y |Z = 0) =

j∗−1∑
j=1

E[Yj − Yj−1|D1 ≥ j > D0] · Pr(D1 ≥ j > D0)

+ E[Yj∗ − Yj∗−1|D1 ≥ j∗ > D0] · Pr(D1 ≥ j∗ > D0) (9)

+

J∑
j=j∗+1

E[Yj − Yj−1|D1 ≥ j > D0] · Pr(D1 ≥ j > D0).

The �rst special case occurs if and only if all compliers are concentrated at the threshold such

that the instrument has no e�ect on the treatment at margins of D other than j∗, see also the

discussion in Section 3.1 of Angrist and Imbens (1995).

Assumption 4 (concentration of compliers at threshold):∑
j 6=j∗ Pr(D1 ≥ j > D0) = 0.

It follows from Assumption 4 that (7) and the nominator of (1) are equivalent, implying E(D|Z =

1) − E(D|Z = 0) = E(D∗|Z = 1) − E(D∗|Z = 0) and that E(Y |Z = 1) − E(Y |Z = 0) =

∆∗ · Pr(D1 ≥ j∗ > D0) in (9) (Angrist and Imbens, 1995). Therefore, WD∗ = ∆∗ = ∆w, and this

coincides with E(Yj∗−Yj∗−1 | D1 = j∗, D0 = j∗−1), the parameter of interest in Marshall (2016)

identi�ed under his Assumptions 2 and 5∗. In cases where Assumption 4 is violated, Angrist and

Imbens (1995) show that WD∗ is larger in absolute terms than ∆w.

As second special case, assume that all compliers in the population switch their treatment

from the lowest (D0 = 0) to the highest (D1 = J) possible treatment value in response to the

instrument, while there exist no compliers with other treatment margins a�ected. This implies

that the complier population remains constant across values of j.

Assumption 5 (concentration of compliers at extreme treatment values):

I{D1 ≥ j > D0} = I{D1 ≥ j∗ > D0} for all j, j∗ ∈ {1, ..., J}.

Note that this assumption is stated in terms of indicator functions in contrast to Assumption 4,

which is stated in terms of compliance probabilities. The reason is that while constant complier
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sets across j imply constant compliance probabilities, the converse is not true: There might

for example exist compliers that shift D from 0 to 1 and others that shift from 1 to 2 when

switching the instrument from 0 to 1. If the shares of these complier groups are the same, the

complier probabilities would remain constant across j ∈ {1, 2}, despite the existence of compliers

at intermediate treatment values.

Under Assumption 5, (9) simpli�es to


J∑
j=1

E[(Yj − Yj−1)|D1 ≥ j∗ > D0]

 · Pr(D1 ≥ j∗ > D0). (10)

Therefore, WD∗ = ∆∗ and corresponds to the sum of impacts related to unit changes in treatment

D across the entire support. This implies ∆w = ∆∗/J , i.e. the average e�ect of unit changes

in the multivalued treatment corresponds to the sum of e�ects across all possible unit changes

divided by the number of possible treatment states J . The reason is that under Assumption 5,

the weights in (2) become Pr(D1≥j∗>D0)
J ·Pr(D1≥j∗>D0)

= 1/J , while in (1), E(Yj − Yj−1|D1 ≥ j > D0) =

E(Yj − Yj−1|D1 ≥ j∗ > D0) . Therefore,

∆w =
E(Y |Z = 1)− E(Y |Z = 0)

E(D|Z = 1)− E(D|Z = 0)
=

E(Y |Z = 1)− E(Y |Z = 0)

E(D∗|Z = 1)− E(D∗|Z = 0)

/
J =

∆∗

J
. (11)

3 Testing Assumptions 3, 4, and 5

This section introduces tests for necessary conditions of Assumptions 3, 4, and 5. Notice that all

the tests described in this paper rely on the validity of Assumption 1. This means that failure to

reject the null hypotheses described could, in principle, be driven either by the invalidity of either

Assumption 1 or Assumptions 3, 4 or 5. Importantly, however, we test necessary, not su�cient

conditions for validity of Assumptions 3, 4 and 5, and so failure to reject the null can never prove

they hold, even when Assumption 1 holds. Rejection of any of the tests, however, points to the
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invalidity of either Assumption 1 and/or Assumptions 3, 4 or 5.6

Under the satisfaction of Assumption 3, it must hold that the share of compliers whose treat-

ment is induced to pass j by the instrument weakly increases when gradually increasing j up to

j∗, while weakly decreasing thereafter. The reason is that Assumption 3 requires that j∗ captures

all compliers, implying that the �rst stage is maximized at the threshold. Formally, the following

weak moment inequality constraints need to hold:

Pr(D1 ≥ j′ > D0) ≥ Pr(D1 ≥ j′′ > D0) for all j
∗ ≥ j′ > j′′ > 0,

Pr(D1 ≥ j′ > D0) ≤ Pr(D1 ≥ j′′ > D0) for all J ≥ j′ > j′′ ≥ j∗. (12)

Proof. Consider the �rst line of (12) and note that

Pr(D1 ≥ j′ > D0) = Pr(D1 ≥ j′ > j′′ > D0) + Pr(D1 ≥ j′ > D0 ≥ j′′)

= Pr(D1 ≥ j′′ > D0) + Pr(D1 ≥ j′ > D0 ≥ j′′) (13)

The �rst equality follows from the law of total probability and the second from Assumption 3.

To see this, note that Pr(D1 ≥ j′′ > D0) = Pr(D1 ≥ j′ > j′′ > D0) + Pr(j′ > D1 ≥ j′′ > D0).

However, by Assumption 3, Pr(j′ > D1 ≥ j′′ > D0) = 0 for any j′ ≤ j∗, such that Pr(D1 ≥

j′′ > D0) = Pr(D1 ≥ j′ > j′′ > D0). Therefore, it follows from Pr(D1 ≥ j′ > D0 ≥ j′′) ≥ 0 that

Pr(D1 ≥ j′ > D0) ≥ Pr(D1 ≥ j′′ > D0). The proof of the second line of (12) is analogous and is

therefore omitted.

By Assumption 1(a) and (b), (12) implies (in analogy to the discussion in (7) for Pr(D1 ≥

j∗ > D0)) that

βj ≥ βj′ for all j∗ ≥ j > j′ > 0,

βj ≤ βj′ for all J ≥ j > j′ ≥ j∗, (14)

6One could imagine jointly testing Assumption 1 and Assumptions 3, 4 or 5. We do not pursue this here
because rejection of the tests for Assumptions 3, 4 or 5 is more informative because they test necessary, not
su�cient conditions.
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where βj = Pr(D ≥ j|Z = 1) − Pr(D ≥ j|Z = 0) denotes the �rst stage e�ect of Z on the

probability that D is larger or equal to some value j. This allows formulating the following null

hypothesis for testing Assumption 3, conditional on the satisfaction of Assumption 1:

H0 :
βj+1 − βj ≥ 0, for all j∗ > j > 0,

βj − βj+1 ≥ 0, for all J > j ≥ j∗
(15)

It is important to see that the satisfaction of this null hypothesis is necessary, but not su�cient for

Assumption 3. One can easily construct cases in which the weak inequalities hold, even though a

subset of individuals complies o� threshold. Concerning the practical implementation, it su�ces

to implement the test for adjacent βj parameters because of their nested nature: β2 ≥ β0 provide

no additional restrictions on the data when β2 ≥ β1 and β1 ≥ β0. These conditions can be veri�ed

using testing procedures for moment inequality constraints, see for instance Andrews and Shi

(2013).

An implementation is available in the `cmi_test' command for the statistical software `Stata'

(Andrews et al., 2017), which we use in our application presented in Section 4. We to this end

reconsider the �rst line of (15) and note that

βj+1 − βj = Pr(D ≥ j + 1 | Z = 1)− Pr(D ≥ j + 1 | Z = 0)

−Pr(D ≥ j | Z = 1) + Pr(D ≥ j |> Z = 0)

= Pr(D = j | Z = 0)− Pr(D = j | Z = 1) (16)

A symmetric argument follows for the second line. Therefore, the sample analog of (15) can be

rewritten in the following way based on inverse probability weighting by E(Z) and 1− E(Z):

E(mj(D,Z)) ≥ 0 (17)

where mj(D,Z) = I{D = j − 1} E(Z)−Z
(1−E(Z))E(Z) for j∗ > j > 0

and mj(D,Z) = I{D = j} Z−E(Z)
(1−E(Z))E(Z) for J > j ≥ j∗.
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These constraints match the structure of the `cmi_test' command of Andrews et al. (2017), which

veri�es the sample analog of (17). Testing may be implemented both based on Cramer-von-Mises

and Kolmogorov-Smirnov-type statistics on average or maximum violations across j, respectively,

and both are considered in our empirical application.

Rejection of the test in (15) indicates the presence of non-threshold compliance: Individuals

who respond to the instrument, but not in a way that make them cross the threshold j∗. In this

case, researchers could look into methods for partial identi�cation with invalid instruments (Flores

and Flores-Lagunes, 2013) or sensitivity tests to violations of the exclusion restriction (Huber,

2014). Alternatively, a researcher could rely on Assumption 2 for identi�cation or estimate the

the linear IV model using the original treatment D.

Concerning Assumption 4, both a necessary and su�cient condition for its satisfaction, con-

ditional on Assumption 1, is that any �rst stage e�ect of Z on the probability that D ≥ j must

be zero unless j = j∗, because all compliers must be located at the threshold. Formally,

H0 : βj = 0 for all j 6= j∗. (18)

Finally, a necessary condition for Assumption 5 is that the �rst stages or complier probabilities

are constant across j. As highlighted in the discussion of Assumption 5 in Section 2, this implies

a concentration of compliers at extreme treatment values, but is not su�cient for ruling out other

complier groups. Formally, the hypothesis to be tested is

H0 : βj = βj+1 for all j < J. (19)

Both (18) and (19) can be tested by means of an F -test in a system of equations in which treatment

indicator functions I{D ≥ j} at di�erent values j are regressed on a constant and Z.

If there is heterogeneity in the �rst stage coe�cients across subgroups, performing our tests

within cells of X may provide additional power to reject Assumptions 3, 4 or 5. The reason is

that violations of e.g. Assumption 3 in some subgroups may be averaged away in the full sample.
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Control variables may be included as conditioning set in the moment inequality- and regression-

based tests. In (17), for instance, control variables can be considered by replacing E(Z) everywhere

with the conditional expectation of Z given the controls, also known as instrument propensity

score, and including conditioning on X in the mj-function, see example 6 in Andrews and Shi

(2014). This allows us to jointly test (17) within all cells of X.

Furthermore, the outcome variable may also be used as a conditioning variable in this setup,

which may likewise increase power. Although the complier shares in the population cannot be

consistently estimated when conditioning on the outcome as the latter is endogenous to the in-

strument, the sign of any coe�cient βj remains weakly positive when conditioning on Y if mono-

tonicity as postulated in Assumption 1 holds. Therefore, the bias due to conditioning on the out-

come cannot entail a violation of the conditions in (15) if Assumption 3 is satis�ed. This in turn

means that the non-satisfaction of (15) conditional on Y provides evidence for a violation of As-

sumption 3. The Monte Carlo simulations in Appendix A illustrate this implication and show

how conditioning on the outcome can lead to an increase in testing power.

We note that the testing approaches can be extended to multivalued discrete as well as con-

tinuous instruments. For multivalued discrete instruments, the conditions given in (15), (18), and

(19) must hold when de�ning βj = Pr(D ≥ j|Z = z′)− Pr(D ≥ j|Z = z′′) for any values z′ > z′′

in the support of Z. For continuous instruments, the conditions given in (15), (18), and (19) must

hold for in�nitesimal increases in Z across the entire support of Z. In this case βj = ∂ Pr(D≥j|Z=z)
∂z

for any z in the support of Z.

Finally, we point out that even though Assumptions 3, 4, and 5 are framed in the context of

IV methods, our testing approaches can be applied whenever one is interested in checking if some

variable exclusively a�ects a particular margin of a treatment, conditional on the monotonicity

assumption. For instance, a test based on (15) may be used to verify whether a randomized labor

market program shifts labor supply only at the extensive margin (working vs. not working), or

also at the intensive margin (working more vs. less hours), a test based on (18) may be used to

test whether participants are exclusively shifted from no to very low levels of labor supply and a
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test based on (19) may be used to test whether participants are exclusively shifted from no to full

time work.

4 Empirical application

We apply our tests to labor market data previously analysed by Card (1995) that come from the

1966 and 1976 waves of the U.S. National Longitudinal Survey of Young Men (NLSYM). Card

(1995) considers a dummy for proximity to a four-year college in 1966 as an instrument for the

likely endogenous schooling decision to estimate returns to schooling in 1976. The intuition is

that proximity should a�ect the schooling decision of some individuals, for instance due to costs

associated with going to college when not living at home. The original data contain years of

schooling as measure of education, but similar to Carneiro et al. (2011), we binarize the treatment

to indicate having at least 16 years of education, which roughly corresponds to a four-year college

degree.

Table 1: Summary statistics,

Variable N mean s.d. min max comment

Years of schooling 3,010 13.3 2.68 1 18 1976

College dummy 3,010 0.27 0.44 0 1 Dummy for 16 or more years of education

College proximity 3,010 0.68 0.47 0 1 = 1 if near 4-year college in 1966

Log wage 3,010 6.26 0.44 4.6 7.8 log hourly wage in cents, 1976

Age 3,010 28.1 3.14 24 34

Father's education 2,320 10.0 3.72 0 18

Mothers' education 2,657 10.3 3.18 0 18

Region 3,010 4.64 2.27 1 9 Regional dummy, 1966

SMSA 3,010 0.71 0.45 0 1 Metropolitan area of residence dummy

Black 3,010 0.23 0.42 0 1

Family type 2,796 1.07 0.38 0 2 Single mom / both parents / step-parent

Note: Data source: National Longitudinal Study of Young Men, 1966 and 1976 waves.

The variables used in our analysis are summarized in Table 1. The multivalued treatment is

years of schooling in 1976, which varies from 1 to 18 years with a mean of 13.3. Our binarized

treatment is a dummy for having 16 or more years of schooling, which has a mean of 0.27. The

instrument is a dummy equal to 1 for people living close to a 4-year college in 1966. The outcome
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is the log of hourly wages in cents, measured in 1976. In addition, we report a range of control

variables, including age, parents' education, geographic dummies, race, and a dummy for family

type at age 14.
0
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.1
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2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
educ at least

Baseline estimates

Figure 1: E�ects of living close to a four-year college on years of education

Note: Data from NLSYM. Figure shows the estimated impact on binary measures of years of education equal to
or above j of living close to a four-year college. The threshold for the binarized treatment is 16 or more years of
education as indicated by a dashed line, corresponding roughly to a four-year college degree.

To illustrate our tests, we �rst estimate the βj parameters outlined in Section 3, which re�ect

increases in the probability of having j or more years of schooling when living close to a four-year

college compared to living further away, for all margins of education. To this end we estimate a

system of equations in which the indicators of having at least j years of education are regressed on

the instrument. Figure 1 displays the βj estimates along with pointwise 95% con�dence intervals.

In alternative speci�cations, we interact the entire speci�cation with fully �exible controls to

estimate cell speci�c βj coe�cients. The reason for this is that proximity to college is likely asso-

ciated with factors also a�ecting wages, like local labor market conditions or family background,

which would violate Assumption 1. As testing Assumptions 3, 4, and 5 is conditional on Assump-

tion 1, we similarly to Card (1995) control for regional variables (SMSA and region in the US)
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Figure 2: Maximum violations of Assumption 3 across cells

Note: Data from NLSYM. Figure shows the maximum violations across cells of X as indicated in panel title,
plotted in red. Violations are βj − βj+1 for j < j∗ and βj+1 − βj for j ≥ j∗. For comparison, the violations in the
case with no controls are plotted in blue. The threshold for the binarized treatment (j∗) is 16 or more years of
education as indicated by a dashed line, corresponding roughly to a four-year college degree.



and socio-economic factors (e.g. parents' education and ethnicity) to increase plausibility of IV

exogeneity.

Inspecting Figure 1 allows eye-balling the plausibility of our assumptions for the case with no

controls. We observe that the pattern of coe�cients are not consistent with Assumption 4, which

requires all coe�cients except β16 to be 0. Neither does it appear to support Assumption 5, which

requires the coe�cients to be constant across j. Concerning Assumption 3, notice that the dashed

line indicating the cuto� value for de�ning the binarized treatment is to the right of (rather than

at) the mode of the βj estimates, pointing to violations of the conditions in (12).

To formally investigate Assumption 3, we test the constraints in (17) using the `cmi_test'

command of Andrews et al. (2017) based on Cramer-von-Mises and Kolmogorov-Smirnov test

statistics.7 The results are provided in panel A of Table 2. Without including control variables,

the p-value of both statistics is 0.049, pointing to a signi�cant violation of the constraints in (15).

When including control variables, we look for violations within cells of X, estimating the βj

coe�cients in each cell and testing Assumptions 3, 4 or 5 jointly for all cells. Because there are

now multiple sets of βj coe�cients, plotting them all is infeasible. Instead, we plot the maximum

violation of Assumption 3 across cells using red bars in Figure 2. For comparison, we also plot the

violations from the case with no controls using blue bars. There are indications of violations in

some cells at values of j where we found no evidence of violation in the case with no controls. This

indicates that there are violations in some groups of X that are averaged away when estimating

a single set of βj coe�cients.

The formal tests with controls are found in columns (2)-(9) of Table 2. The violations that were

shown graphically in Figure 2 are statistically signi�cant in many of the speci�cations, indicating

violations of Assumption 3 and the presence of o�-threshold compliers in at least some cells of X

and some o�-threshold levels of j. In particular, Assumption 3 is soundly rejected in at least some

subgroups of log wage, as seen in columns (7)-(9). When interpreting the results from the tests

7A small program for Stata, to be found on github.com/martin-andresen/mvttest, estimates and plots the βj
coe�cients, tests Assumption 4 and 5 using F -tests, constructs the moment inequalities and tests them using
`cmi_test'.
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Table 2: Tests of instrument validity with a binarized treatment

(1) (2) (3) (4) (5) (6) (7) (8) (9)

A: Conditional moment inequalities tests of Assumption 3

Inequalities 16 15 15 13 15 15 15 15 15
Cells of X 11 19 19 18 6 12 4 10
Inequalities tested 16 135 161 162 184 69 117 49 112

Cramer-von-Mises type test statistic

Test statistic 1.618 2.937 3.483 2.452 4.149 1.961 3.366 3.912 4.623
Critical value 1% 2.186 4.877 4.213 3.981 4.459 3.238 3.798 3.493 4.345
Critical value 5% 1.614 4.202 3.578 3.337 3.827 2.637 3.186 2.794 3.721
Critical value 10% 1.354 3.894 3.258 3.062 3.537 2.367 2.877 2.536 3.422
p-value 0.049 0.459 0.062 0.335 0.024 0.234 0.033 0.002 0.004

Kolmogorov-Smirnov type tests statistic

Test statistic 13.57 10.73 13.62 11.13 15.00 7.80 20.09 25.09 27.31
Critical value 1% 18.33 21.10 19.78 18.67 20.77 18.56 19.71 18.07 19.65
Critical value 5% 13.53 16.87 15.46 14.62 16.00 14.22 15.27 14.15 15.95
Critical value 10% 11.36 15.12 13.63 12.68 14.26 12.37 13.41 12.31 14.27
p-value 0.049 0.436 0.100 0.191 0.076 0.451 0.009 0.000 0.000

B: F-test of Assumption 4

F 4.532 1.521 2.003 1.609 2.200 1.871 1.874 1.854 1.340
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011
constraints tested 16 135 162 164 184 69 118 49 112

C: F-test of Assumption 5

F 4.639 1.510 2.082 2.067 2.434 2.074 2.067 2.260 1.631
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
constraints tested 16 146 180 180 201 74 127 52 120

Controls

Age X
Fathers' education X
Mothers' education X
Region X
SMSA X
Black X X
Family type X X
Quantiles of Y 2 4 10

N 3,010 3,010 2,320 2,657 3,010 2,796 2,796 3,010 3,010

Note: Panel A shows test statistics, critical values and resulting p-values from tests of the moment inequalities in
(15), tested using cmi_test for Stata (Andrews et al., 2017). Panel B shows the results from an F -test of βj = 0
for all j 6= j∗ and all cells of X, testing the special case in Assumption 4. Panel C shows F -tests of whether all
βj are the same (within cells of X), testing the special case in Assumption 5. Controls as indicated in the bottom
panel. Singleton groups are dropped.



of Assumption 3, it is important to keep in mind that we test necessary, not su�cient conditions

for the assumption to hold. Therefore, rejection of the null hypothesis provides evidence against

the exclusion restriction, but we can never provide evidence that it holds.

For testing Assumptions 4 and 5, we test the null hypotheses in (18) and (19) using F -tests in

our system of equations used to estimate the βj parameters.8 The outcomes are displayed in panels

B and C of Table 2, respectively. Both assumptions are soundly rejected in all speci�cations. The

results therefore suggest that compliers are not exlusively a�ected at the threshold, i.e. swithcing

from 15 to 16 years of education in response to the instrument, nor exclusively from the lowest

to the highest values of education. Therefore, the weighted average of treatment e�ects based on

unit changes, ∆w, cannot be recovered based on the binarized treatment.

Overall, our results indicate that the exclusion restriction might be violated for the binarized

education measure considered. Even though the graphs and estimates suggest that proximity to a

four-year college indeed a�ects education, it may do so not by an exclusive shift towards obtaining

at least a four-year college degree. Rather, the instrument seems to also a�ect the probability of

both starting college without �nishing and of obtaining a two-year college degree. However, such

possibilities are ignored when de�ning the treatment as a four-year college degree. Judging from

the graphs in Figure 1, the exclusion restriction is more likely satis�ed if treatment is de�ned

as having at least some college education versus having less education.9 Yet, we need to bear

in mind that even in this case Assumption 3 might be violated, namely if some compliers shift

from a two-year college degree to a four-year degree, because we test only necessary, not su�cient

conditions for exclusion after binarization.

8The system of equations is estimated in a stacked regression using the reghdfe command (Correia, 2014) to
account for the covariance of the βj estimates. Standard errors are clustered at the individual level and robust to
heteroskedasticity.

9In fact, the constraints in (15) cannot be rejected if the threshold is chosen at the mode of an unimodal set of βj
parameters when there are no control variables. With control variables, however, our tests may indicate violations
in some subgroups even in this case.
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5 Conclusion

In the context of IV-based estimation, we discussed threats to the exclusion restriction when

binarizing a multivalued endogenous treatment. Such a violation occurs whenever (i) the IV

a�ects the multivalued treatment within support areas below and/or above the threshold for

binarization and (ii) such IV-induced changes in the multivalued treatment a�ect the outcome. As

a consequence, IV with a binarized treatment identi�es the causal e�ect among individuals whose

binary treatment complies with the IV only if either (i) or (ii) can be ruled out. Furthermore, we

described the causal parameter that can be identi�ed under these assumptions, which are weaker

than previous assumptions in e.g.. Marshall (2016).

More importantly, we showed that (i) has implications that can be tested in a moment in-

equality framework when the original treatment variable prior to binarization is observed. Fur-

thermore, when ruling out (i) and restricting the support of the multivalued treatment in a par-

ticular way, not only the average complier e�ect of the binarized treatment, but also a weighted

average e�ect of unit changes of the multivalued treatment is recovered. We derived testable im-

plications of these support restrictions that can be veri�ed by standard F -tests. Finally, we pro-

vided an empirical illustration to the estimation of returns to a four year college degree, a bina-

rized treatment generated from the multivalued years of education. Our results suggested that

the exclusion restriction is violated for such a coarse de�nition of treatment.

As a �nal word of caution, we emphasize that the threats to the exclusion restriction not only

arise when binarizing a treatment. The issues discussed in this paper prevail whenever the IV

a�ects a �ner measure of treatment than used by the researcher in her IV analysis, even when �ner

treatment measures are not available in the data. Examples include binning a truly continuous

treatment into a discrete number of categories or coarsening ordered discrete treatments into a

smaller number of categories (e.g. considering low vs. intermediate vs. high levels of education

rather than years of schooling). The conditions in this paper highlight under which circumstances

the IV validity for the underlying �ner treatment measure carries over to a more coarsely de�ned
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treatment.
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A Appendix: Simulations when conditioning on the outcome

Our simulation study illustrates how conditioning on the outcome may increase the power of

testing Assumption 3. The treatment may take three values, D ∈ {0, 1, 2}. We set j∗ = 2

and would like to test whether β2 − β1 ≥ 0 is violated. The data generating processes (DGP)

considered are de�ned in Table 3. De�ers are ruled out by monotonicity and the population

shares of never and always takers are set to 0, too (as they are asymptotically irrelevant for the

power of the tests). As the expected value of the test statistic in the full sample corresponds to

E(β2−β1) = π12−π01 = 0, we should not be able to detect violations of Assumption 3 in the full

sample even thought 30% of the population do not satisfy Assumption 3. However, we may be

able to detect such violations in subsamples of Y , because the endogeneity of Y implies that the

shares of the di�erent complier groups are di�erent within cells of Y than in the full population.

This allows us to detect the presence of the o�-threshold complier group C01 even if the complier

shares are not consistently estimated w.r.t. the total population.

Table 4 shows the results for 1,000 simulations of each of the DGPs outlined in Table 3,

using 500 observations per simulation. The �rst column (�All�) provides the results of a test

of Assumption 3 based on (15) in the full sample. As expected, we cannot detect violations of

Assumption 3 because the presence of the complier group C01 is averaged out by the presence of

the equally sized complier group C12. Across subsamples of Y in cases (1)-(4), we may detect

violations whenever the DGP generates imbalances in the complier groups across cells of Y . While

this does not happen in case 1, where compliers violating Assumption 3 are averaged out by non-

violating compliers even within cells of Y , we see an increase in testing power in cases (2) - (4),

where the di�erent complier groups are shifted di�erently across Y by the instrument. Figure 3

shows the distribution of the test statistic of each group and each of the four cases, illustrating

how conditioning on Y may detect the presence of o�-threshold compliers.
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Table 3: Data generating process

Complier group C01 C02 C12

D0 0 0 1

D1 1 2 2

E(Z) 0.5 0.5 0.5

Population share π 0.3 0.4 0.3

Case 1 Case 2 Case 3 Case 4

Pr(Y = 1 | Z = 0, C) 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.2 0.1 0.4 0.2 0.1

Pr(Y = 1 | Z = 1, C) 0.4 0.4 0.4 0.4 0.5 0.6 0.6 0.4 0.3 0.5 0.4 0.4

Table 4: Simulation results, conditioning on Y

All Case 1 Case 2 Case 3 Case 4

Y = 0 Y = 1 Y = 0 Y = 1 Y = 0 Y = 1 Y = 0 Y = 1

β1 0.70 0.70 0.70 0.65 0.77 0.79 0.57 0.74 0.64

(0.030) (0.038) (0.047) (0.039) (0.043) (0.034) (0.049) (0.037) (0.046)

β2 0.70 0.70 0.70 0.70 0.70 0.69 0.73 0.69 0.73

(0.028) (0.032) (0.066) (0.032) (0.066) (0.032) (0.060) (0.032) (0.060)

β2 − β1 -0.0020 -0.0032 0.00091 -0.053 0.075 0.098 -0.16 0.047 -0.084

(0.042) (0.050) (0.080) (0.051) (0.077) (0.047) (0.079) (0.050) (0.076)

p-value 0.60 0.55 0.39 0.15 0.36

(0.37) (0.31) (0.31) (0.20) (0.30)

rejection rate 0.032 0.028 0.10 0.42 0.13

(0.18) (0.17) (0.30) (0.49) (0.34)

true β2 − β1 0 0 0 -0.046 0.086 0.134 -0.273 0.090 -0.182

Table reports results from 1,000 simulations of the four di�erent data generating processes described in Table 3, using 500
observations per simulation. The reported values are the means of the respective parameters across the 1000 simulations,
standard deviations are reported in parentheses. The rejection rate is based on the 5% level of signi�cance.
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Figure 3: Density plots of test statistics

Note: True values indicated with vertical lines.
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