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We investigate the heterogeneity of assortative labor matching with respect to geography, skills, and tasks. Our
contribution is to separate plant quality by education level and occupation tasks using the AKM-model. We
introduce a geology-related instrument to analyze the city effect and address limited mobility bias. Using rich
administrative worker-plant dataset for Norway, we show that matching of the college educated have a strong city
effect. The IV estimates indicate that a doubling of city size increases the correlation between worker and plant
quality by 9 percentage points. A wage decomposition shows that matching accounts for 22% of the urban wage
premium adjusted for sorting. In terms of occupations, better matching in cities is observed only for non-routine
abstract tasks.
1. Introduction

The urban wage premium is found to be increasing with the level of
education of workers. Bacolod et al. (2009) offer an early overview of the
allocation of skills across cities and the impact of agglomeration on wages
dependent on skill. Recent studies improve the identification strategies.
Carlsen et al. (2016) expand the analysis of De la Roca and Puga (2017)
of dynamic urban wage gaps by allowing for heterogeneity with respect
to education. They show that college-educated workers are positively
selected into cities and benefit more than the low educated from working
in cities even when sorting is accounted for. Baum-Snow and Pavan
(2012) develop and estimate a structural model and find advantages for
college-educated workers living in large cities. The result that urban
productivity is higher for workers with higher education is convincing,
but there is scarce evidence of the mechanisms. We pursue the impor-
tance of the education level of workers and occupation tasks for matching
of workers and firms in local labor markets – a potential explanation of
the productivity effect of urban scale.

The role of assortative matching for regional wage differences is
recently analyzed by Dauth et al. (2022) based on data for private sector
workers in Germany. They find that assortativematchingmatters –wages
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are higher in large cities because they attract high-quality workers, but
also because high-quality workers are likely to be better matched to
high-quality firms. The method applied was innovated by Abowd et al.
(1999), called the AKM-model. It estimates wage components attribut-
able to workers and firms and addresses unobservable characteristics.
Card et al. (2013, 2018) have developed the empirical methodology and
shown that assortative matching affects the wage distribution. Earlier
studies related to urbanization inclu de Andersson et al. (2007), Melo and
Graham (2014) and Figueiredo et al. (2014). The finding that assortative
matching is stronger in large cities is in accordance with the standard
understanding that large labor markets facilitate more productive
matching between workers and firms. Our results show that the matching
effect strongly depends on the allocation of workers across firms by skill.

Our main contribution is to extend the model formulation to analyze
the role of skill heterogeneity for the geographic variation of assortative
matching. The standard AKM-model assumes identical firm fixed effects
for all workers in a firm independent of their time-invariant character-
istics. However, when technologies of firms are affected by skill-
replacing and skill-biased technological change, the quality of the firm
is likely to be different for workers with different skill levels. Key refer-
ences regarding the understanding of skill-bias are Acemoglu (2007) and
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1 In the analysis, we estimate plant fixed effects, but use the terms plant and
firm interchangeably throughout the paper.
2 Further details on the dataset are given in Appendix A with descriptive

statistics in Table A.1.
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Acemoglu and Autor (2011). We suggest a more flexible formulation of
the AKM-model by estimating the fixed effects in separate regressions for
three worker groups defined by their level of education (primary, high
school and college). This allows the plant fixed effects to differ by
workers’ skill levels within the same plant. Giannone (2019) offers an
analysis of the role of skill-bias in regional convergence separating be-
tween education groups. An alternative approach is to apply productivity
data for the assessment of assortative matching, recently discussed by
Mendes et al. (2010). In this literature, firm-specific productivity terms
for each firm are quantified and related to the skill distribution of
workers in the firm. However, this method does not allow for a measure
of firm quality related to different skill levels of workers. The recent
literature has emphasized routine-biased technological change with
Autor et al. (2003) as an early contribution. We extend the analysis of
heterogeneity to include a separation of workers based on occupation
tasks.

A concern with the AKM-analysis is the dominance of negative cor-
relations between worker and firm fixed effects. A background under-
standing of the limited mobility bias problem is offered by Andrews et al.
(2012). We show how the correlations vary with changes of the sample
selection and that negative correlations originate from a small part of the
labor market – firms in the bottom of the employment size distribution.
This finding sheds light on a limitation of the standard AKM-model, and
enables us to test several amendments to the basic estimation strategy to
mitigate limited mobility bias.

A second contribution of the paper is the handling of endogeneity and
omitted variables affecting regional population size. Dauth et al. (2022)
recognize identification challenges related to labor market size and use
historical population data to instrument present populations in city re-
gions. We introduce historical mines as an alternative instrument for
population size, which yields point estimates that are about 50% higher
than with OLS. The difference may reflect seemingly bad matches in
cities due to urban amenities compensating wages, specialized industries
in the periphery with good matches, and college-cities with bad matches.
The strengths of the mining instrument are that the exclusion restriction
is clearly stated, the historical mining activity has ceased, and that the
impact on present city size can be understood through path dependence.
Another relevant topic in the empirics of agglomeration economies is
selection. Sorting of workers into populous places have been found to
exacerbate regional wage disparities (Ahlfeldt and Pietrostefani, 2019).
To gauge the importance of spatial selection processes for our results,
contrafactual decomposition analysis is offered.

Using rich administrative data for Norway linking workers and firm
plants, we investigate whether the overall positive relationship between
city size and matching varies by the education level of workers. We find
that the positive relationship between city size and assortative matching
is driven mainly by college-educated workers. The better matching of the
college educated in cities is consistent with studies showing that
agglomeration effects increase with the level of education. The decom-
position of spatial wage differences shows that for the college educated,
assortative matching accounts for 22% of the urban wage premium
adjusted for spatial worker sorting. Furthermore, better matching in
cities for the college educated explains about 1/3 of the difference in the
adjusted urban wage premium between non-college and college-
educated workers. In an extension, we analyze the differences accord-
ing to occupation tasks instead of skills. The results show that the
importance of city size for matching is concentrated to workers con-
ducting non-routine abstract tasks, corroborating the results for workers
with higher education.

The heterogeneity with respect to gender and age distribution of
workers is also studied. The relationship between city size and matching
is confirmed for both male and female college-educated workers. We
explore the age gradient with respect to assortative matching in regions
of different sizes. College-educated workers are again better matched in
more populous areas, and in particular among workers in the middle of
the age distribution.
2

The econometric strategy separating plant fixed effects by education
groups is discussed in section 2. Econometric challenges related to
limited mobility bias and endogenous population size are discussed in
section 3. The main results are reported in section 4, including the
relationship between city size and matching using education-specific
measures of firm quality, a discussion of the identification challenges,
and a comparison of the results for education groups versus occupation
task groups. Section 5 discusses the importance of the findings for urban
wage premiums by decomposing spatial wage differences. Section 6 in-
vestigates the robustness of results, primarily for limited mobility bias.
Further heterogeneity with respect to gender and age distribution is
pursued in section 7. Concluding remarks are given in section 8.

2. Estimating assortative matching separating between
education groups

To study if there is a skill-heterogeneous relationship between as-
sortative matching and city size, we employ the method innovated by
Abowd et al. (1999) estimating two-way worker and plant fixed effects.1

In this framework, plant effects are identified by workers switching
plants. We use a longitudinal dataset of employer-employee register data
for the entire Norwegian labor force on hourly wages and worker char-
acteristics during 2003–2014. We concentrate on full-time workers aged
25–65 employed in the private sector. The dataset includes about 8.1
million observations, covering 1.2 million workers and 118,000 plants.
As explained below, in the main analysis we exclude plants with five or
fewer workers to mitigate limited mobility bias resulting from plants
with few job shifts.2

The AKM-strategy entails estimation of individual-level wage equa-
tions with both worker and plant fixed effects. We start out with the
following aggregate specification:

ln wit ¼ μi þ φJði;tÞ þ Xitβ þ εit (1)

where wit is the hourly wage income for worker i in year t. Worker fixed
effects are represented by μi, and φJði;tÞ captures plant fixed effects of all
employees of plant J. The vector of time-varying worker characteristics
ðXitÞ includes job tenure (measured as the length of tenure for a worker in
a specific year and a specific plant, given information on work contracts
back to 1993), education-specific cubic age profiles (quadratic and cubic
age terms interacted with dummies for three levels of education), and
year dummies. β is a vector of parameters and εit is the error term.

The additive formulation of the AKM-model has been questioned,
notably by Eeckhout and Kircher (2011), Lise and Robin (2017) and
Lopes de Melo (2018). Macis and Schivardi (2016) and Bonhomme et al.
(2019) provide empirical support for the additive structure of the
AKM-model based on Italian and Swedish data, respectively. To test
whether the AKM-model is a good approximation of the wage structure in
Norway, we compare the fit with that of a match effect model in Ap-
pendix Table B.1. The table shows that the adjusted R-squared from the
match effect model is only slightly higher relative to the AKM-model and
root MSE is only slightly lower independent of sample restrictions. The
improvement in fit is extremely modest in line with the findings of Card
et al. (2013) and Macis and Schivardi (2016).

The correlation between the estimated worker and plant fixed effects
gives a measure of assortative matching. To retrieve the strength of as-
sortative matching within a city region, we calculate the correlation
between fixed effects within each local labor market, r. The geographic
units used in the analysis are based on information about commuting
flows between municipalities. They are constructed by Statistics Norway,
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which divides Norway into 89 economic regions (broadly consistent with
NUTS-4 regions in the EU standard). To study the relationship between
assortative matching and city size, we regress the correlation between
worker and plant effects within each labor market ðCorrFErÞ on regional
population size ðPoprÞ:

CorrFEr ¼α0 þ α1 ln Popr þ εr (2)

There are large differences in population size across regions with an
average of about 50,000 inhabitants and a standard deviation of 75,000.
About 40% of the regions have population below 20,000. As an alter-
native to the relationship between continuous labor market size and
strength of assortative matching in equation (2), we study how the
matching varies between regions grouped based on population size.
Consistent with earlier studies of Norwegian regions, we separate be-
tween 7 large cities with population above 150,000, 13 small cities with
population in the range 65,000–150,000, and the remaining regions with
less than 65,000 inhabitants.

We proceed with three subgroups of workers according to level of
education: primary, high school, and college.3 In the dataset applied in
the main analysis, about 18% of the workers have no more than
compulsory schooling, while workers with high school and college ed-
ucation account for 50% and 32% of the sample, respectively. As dis-
cussed in the introduction, we allow plant fixed effects to differ by level
of education within the plant by estimating the fixed effects separately
for the three education groups. This formulation takes into account
possible complementarity between skill level of workers and plant-
specific productivity. We compare the plant fixed effects distributions
for the three education groups to study if the quality of plants varies by
the skill level of workers (documented in Appendix Table B.2). The rank
correlation between the plant FE distributions of primary and high school
educated and between high school and college educated are both 0.26 (in
about 24,000 plants). As expected, the rank correlation between plant
fixed effects related to primary and college educated is lower, 0.15 (in
about 19,000 plants). The plant fixed effects estimated separately for
education groups are quite different. To extend the documentation that
the plant fixed effects differ across education groups, we calculate the
quintiles of the plant fixed effect distributions and identify the overlap of
plants in each quintile. Comparing the top 20% of plants for each edu-
cation group, we find 36–37% overlap between primary and high school
educated and between high school and college educated, while the
overlap for primary and college educated is 29%. The degree of overlap is
in the order of 20–30% for comparisons in other quintiles. The low de-
gree of overlap in the distributions of plant fixed effects suggests that the
assumption of skill-independent plant effects is strong and that the plant
fixed effects should be allowed to differ between education levels.
Arguably, this will contribute to better measurement of the true strength
of assortative matching.4 In a further study of how the differences relate
3 Among workers with high school education, about 80% have a degree based
on 3–4 years of schooling, while the remaining 20% have 1–2 years of high
school education. Among the college educated, 87% either have a graduate
degree (3–4 years of higher education, equivalent to a bachelor degree) or a
postgraduate degree (more than 4 years of higher education), while workers
with 1 or 2 years of higher education (but no degree) account for 3% and 10%,
respectively.
4 The distributions of the education-specific plant fixed effects are shown in

Figure C.1 in a separate online appendix available from the authors. The shape
of the distributions is similar, but as shown above, the ranking of plants within
the distributions differs substantially across education groups.
5 Table C.1 in the online appendix studies whether the differences in a plant's

position (percentile) in two respective education-specific plant fixed effect dis-
tributions vary systematically with plant-level and region-level characteristics
like sector and population size. Defining the dependent variable as the absolute
value of the difference in percentiles, the findings show that the difference in a
plant's position in the fixed effect distributions decreases with the regional
population size and is higher in services than in manufacturing.

3

to firm-level and region-level characteristics, we show that both sector
and city size matter.5

In the analysis, we demonstrate how allowing for separate plant fixed
effects for workers with different education level matters for the rela-
tionship between matching and city size (in section 4) and for the
decomposition of spatial wage differences (in section 5). The flexible
specification with education-specific plant FEs is compared with the
aggregate AKM-model where the fixed effects are estimated in one
common regression under the assumption that plant fixed effects are
identical for all workers in each plant.

We apply the same approach when extending the evidence to occu-
pation tasks, separating between non-routine manual, routine and non-
routine abstract occupations (as described by Acemoglu and Autor,
2011). Occupational data are available for the period 2003–2010 and
include 345 occupations (see descriptions in Appendix A). The fixed ef-
fects are estimated separately for three subgroups of workers defined by
the main task content of their occupation. The models estimated for
studying differences across occupation task groups are identical to those
used for skill groups.

3. Econometric challenges: limited mobility bias and
endogenous population size

Limited mobility bias is a potential problem with the AKM-model.
Fig. 1 illustrates the relationship between estimated plant fixed effects
and small plant size when using all data available. The figure shows large
variation in the plant fixed effect among small plants, while the variation
decreases with plant size. The dispersion in plant quality is expected to be
larger in the lower end of the size distribution, as plant size may signal
success, small plants can be highly specialized and productive, and the
strength of applicant screening may be lower for small plants. However,
the marked pattern shown in the figure is likely to also reflect mea-
surement problems. Our interpretation is that the estimated fixed effects
are noisy in small plants with few job switches. This may in turn affect the
calculated correlation between worker and plant fixed effects measuring
the strength of assortative matching.

Using all observations in our dataset, the correlation between worker
and plant qualities is negative and equals �0.038. Andrews et al. (2012)
study the negative correlation between worker and plant fixed effects
based on German register data. They show that the correlation between
fixed effects is negative in limited samples where worker mobility be-
tween firms is low, while it turns positive for larger samples with more
inter-firm mobility. The correlation between fixed effects is increasing
and concave in the number of movers per establishment and approaches
the true correlation asymptotically. In Fig. 2, we illustrate a similar
pattern in the Norwegian data. As we exclude small plants with few job
switches from the dataset, the overall correlation between worker and
plant fixed effects increases gradually from �0.038 in the full dataset
towards 0.187 when plants with ten or fewer workers are excluded. At
each point in the figure, the fixed effects are re-estimated given the new
sample. The relationship between minimum plant size and the
education-specific fixed effect correlations is illustrated in Figures C.6 –

C.8 in the separate online appendix. Due to less labor mobility within
education groups, the education-specific correlations are lower than the
aggregate correlation, especially for workers with only primary educa-
tion. In the full dataset, the correlation ranges from �0.4 for the primary
educated to�0.163 and�0.097 for workers with high school and college
education, respectively. Importantly, excluding small plants with few job
switches increases the education-specific correlations between worker
and plant fixed effects for all education groups. For workers with high
school or college education, the correlations turn positive as minimum
plant size increases.

We explore the importance of limited mobility bias for the city size
effect on matching by excluding small plants. We start out by excluding
plants with five or fewer workers on average. In sensitivity analyses, we
compare results with alternative cutoff levels for the exclusion of small



Fig. 1. Estimated plant fixed effects and plant size.

Fig. 2. Correlation between FEs and minimum plant size.

6 The geographic pattern of key variables is displayed in Figure B.1 (regional
correlations between worker and plant fixed effects) and in Figures C.9 – C.11 in
the online appendix (population size of regions, mean worker fixed effects, and
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plants and also show the results when all plants are included. The main
finding is that the exclusion of small plants matters for the estimated
correlation between worker and plant fixed effects (as discussed above),
but the relationship between the strength of assortative matching and
city size remains robust to variation in sample restrictions. This indicates
that the degree of limited mobility bias does not vary systematically with
regional population size.

In the basic dataset, we exclude plants with five or fewer workers on
average. This includes 500,000–600,000 workers every year during the
period 2003–2014, and a total of about 6.5 million worker-year obser-
vations and 32,760 plants. Workers can enter and leave the labor market
4

during the twelve-year period, and in total about one million different
workers are included.6 It should be noted that the geographic dispersion
of the excluded plants does not differ much from the plants remaining in
the dataset. Small plants (no. of workers�5) are well represented in both
cities and in more peripheral regions. The share of plants located in one
of the seven large cities equals 41% and 43% for small and large plants,
mean plant fixed effects).
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respectively. When it comes to industry structure, small plants are
somewhat overrepresented in retail trade, hotels/restaurants and per-
sonal service activities. Workers employed in the small excluded plants
(about 200,000 workers) consist of 24% primary educated, 54% with
high school education and 22% college-educated workers. Compared to
workers in large plants, the college educated are somewhat
underrepresented.

The strength of assortative matching is measured as the correlation
between estimated worker and plant fixed effects (aggregate and sepa-
rately for each education group). With minimum plant size of six
workers, the overall correlation equals 0.146 (as seen from Fig. 2).
Descriptive statistics on the regional correlations are shown in Table 1,
covering all regions and three groups of regions based on population size
(large cities, small cities, periphery). The average correlation across re-
gions equals 0.061. The education-specific correlations are negative on
average across regions, but with important geographic heterogeneity. In
the periphery and in small cities, the high school educated have best
matching, while the college educated is best matched in large cities. For
college-educated workers, the strength of assortative matching varies by
population size (stronger in large cities than in periphery regions and
small cities), while there is not much variation by population size for
primary and high school educated workers.

Identification of the role of labor market size for the strength of as-
sortative matching is challenging because workers and firms are drawn
into urban areas motivated by superior labor matching opportunities.
Although this may be an important productive advantage of cities, it
bedevils interpretation of the population scale coefficient. An equally
important challenge to identification is omitted variables – missing local
variables that affect both matching opportunities and population size. To
handle these possible sources of bias, we apply an instrument for current
population size using information about the geographic distribution of
historical mines introduced by Leknes (2015). The mining industry was
one of the first industries in Norway. In the same way as the locations of
mineral resources are random, it can be argued that the geographic
distribution of the mining industry is random. Also, all the historical
mines were exhausted before the period of our study.7 The discoveries of
valuable mining resources incited economic activity that spurred local
population growth, which is traceable in the population patterns of
today.

Norway has a long history of mining. The written source “Historia
Norvegia” from 1170 mentions a silver mine in Oslo. Later the mining
industry gained momentum, and in the 18th century, mining was one of
the largest national industries. In the period of our study, however, the
traditional mining industry is of marginal importance and all the his-
torical mines are closed. Our argument is that historical mines predict
present day city size, but do not impact city size other than through path
dependence. The understanding resembles that of Bleakley and Lin
Table 1
Correlation between worker and plant fixed effects (mean values across regions).

Aggregate (1) Primary (2) High school (3) College (4)

Overall 0.061 �0.353 �0.058 �0.143
Large cities 0.143 �0.285 �0.031 0.017
Small cities 0.072 �0.358 �0.039 �0.131
Periphery 0.05 �0.36 �0.064 �0.161

Notes: Large cities are regions with population above 150,000 in 2003 (7 re-
gions), small cities are regions with population in the range 65,000–150,000 (13
regions), while the remaining regions constitute the periphery. The worker and
plant fixed effects are estimated separately for three subgroups of workers
defined by the level of education.

7 We omit one region where there is mining activity in the vicinity of a his-
torical mine.

5

(2012), which use natural features related to rivers, portage sites, and
their importance in historical times for local economic activity and
population growth. They argue that the natural advantages of these
places can be considered forfeited today and find that they can still
partially explain contemporaneous population patterns. The fact that the
historical mining activity has ceased sets the instrument apart from
another instrument in the urban economics literature, historical popu-
lation size. Using historical population size as instrument, identification
hinges on different drivers of regional population growth historically
compared to today. In this case, the mechanisms causing historical
population growth is not explicitly stated and it is therefore more
demanding to justify that they are not important today.

It can be argued that the instrument is not solely based on the exis-
tence of mineral deposits, but also on the decision to mine these re-
sources. If labor was an important factor in production, a relationship
may follow whereby number of mines in a region is driven by historical
population size. We are not able to test this empirically because of the
lack of suitable historical population data. However, the scarce historical
sources we have found typically suggest discovery by chance or by
foreign professional miners traveling by the king's decree in search of
valuable metals.8 We acknowledge that if there were cases where early
population size influenced the decision to mine, the instrument can be
interpreted as a proxy for very early population. As larger lags of popu-
lation size should be more reliable, we still prefer such a proxy over
measured historical population with a smaller lag. In the analysis below,
we compare our suggested mining instrument to instruments based on
historical population size and the findings suggest that the bias compared
to standard OLS depends on the chosen year of historical population. In
further investigation of the instrumentation, we back up that the pres-
ence of mines is not much correlated with observed geographic features
that may have a direct impact on wage outcomes.

A detailed description of the data on historical mines can be found in
Leknes (2015). We define historical mines as mines that opened some-
time between the 12th and 19th century. As in the applications by Leknes
(2015) and Carlsen et al. (2016), we use the number of historical mines in
each region. The historical mining activity was reasonably spread out
across the country. The number of mines in a region ranges from zero to
six with a mean number of 0.7 per region (s.e. ¼ 1.28).9

Further analyses are made to control for omitted variables. As the
plant fixed effects also include time-invariant characteristics, a concern is
that the estimated relationship with urban scale reflects industry differ-
ences. We purge the plant fixed effects of industry influences by
regressing them on 2-digit industry fixed effects and use the residual
plant fixed effects in the correlation with worker FE. Another potential
confounder to population size is how regions may vary in industry
specialization. In sensitivity analysis, we include a Herfindahl index of
industry concentration as control variable.

4. Assortative matching, skills, and tasks

Our main hypothesis is that the estimated relationship between
strength of matching and labor market size is positive and increasing in
the formal skill level. The aggregate OLS estimated effect of population
size on assortativematching equals 0.025 and is statistically significant at
5% level. Panel A of Table 2 compares the OLS estimates with the second
stage IV estimates using an instrument for population size based on
historical mining. The first stage estimate is documented in the first
8 See for instance Moen (1978) discussing chance discovery of silver at
Kongsberg, Steen (1986) references discoveries in the north by the Sami during
seasonal reindeer migration, and Thuesen (1979) and Øisang (1942) treating the
importance of foreign miners for discoveries in the southern and middle part of
the country.
9 Table C2 in the online appendix provides more descriptive detail on the

mining locations and years of operation.



Table 2
City size and strength of assortative matching: Heterogeneity across education
levels.

Dependent variable: Correlation of worker and plant FE

All (1) Primary (2) High school
(3)

College (4)

Panel A: Group-specific fixed effects estimated separately for each education level
OLS:
Log population 0.025**

(0.01)
0.022*
(0.012)

0.011
(0.014)

0.048***
(0.012)

R2 0.054 0.03 0.006 0.14
IV-2SLS:
Log population 0.039*

(0.023)
0.018
(0.029)

0.02
(0.033)

0.09***
(0.027)

Exogeneity test (p-
value)

0.499 0.885 0.778 0.054

Panel B: Fixed effects estimated from one common regression for all workers
OLS:
Log population 0.007

(0.008)
0.015
(0.011)

0.022**
(0.011)

R2 0.005 0.017 0.035
IV-2SLS:
Log population 0.013

(0.021)
0.017
(0.026)

0.042*
(0.023)

Notes: The dependent variable is the correlation between worker and plant fixed
effects at the regional level (N ¼ 88). In columns (2)–(4) of panel A, the fixed
effects are estimated separately for three subgroups of workers defined by the
level of education, while in panel B, the correlation is calculated based on fixed
effects estimated from one common regression for all workers. The fixed effects
follow from individual level AKM estimations during 2003–2014 of the log
hourly wage on worker effects, plant effects, education-specific cubic age pro-
files, job tenure, and year dummies. The regional population level is measured in
2003. In the IV-estimations, the instrument for log population is the number of
historical mines opened before the 19th century. The first stage estimation is
given in column (1) of Table 3. Robust standard errors are in parentheses. ***, **
and * indicate significance at the 1 percent, 5 percent and 10 percent level,
respectively.
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column of Table 3 and shows a strong relationship between number of
historical mines opened before the 19th century and current regional
population size (the first stage F statistic is about 18). IV-estimation with
historical mines as instrument gives a coefficient of 0.039, significant at
10% level. The interpretation of the result is that a doubling of the
regional population size increases the correlation between worker and
plant fixed effects by 3.9 percentage points.

Our main innovation is to study how assortative matching differs
between education groups by taking into account that plant fixed effects
may vary dependent on education. In the analysis presented in columns
(2)–(4) in panel A of Table 2, the worker and plant fixed effects are
estimated separately for primary-, high school-, and college-educated
workers. The correlation of worker and plant fixed effects for each
10 It should be noticed that recent research in the US, notably Autor (2019),
has shown that the effect of city size on wages has had different development
over time between skill groups. It follows that our results may be specific to the
period covered.
11 Our main result that assortative matching concentrates on college-educated
workers in large cities apparently is at odds with a finding of Dauth et al. (2022).
They study the importance of skill-intensive city-occupations and estimate that
the elasticity with respect to the size of the local labor market declines with skill
intensity (measured at the regional level). To compare the results, we replicate
their analysis based on occupation data available for the period 2003–2010, as
documented in Table C.3 in the online appendix. We find a strong effect of
employment in city-occupations on matching, but the interaction term with the
share of college educated is not significant indicating that the effect of size on
matching does not vary with skill intensity. However, the analysis of
skill-intensive city-occupations is not directly comparable to our main analysis
since it is done at the regional level. In our understanding, a proper investigation
of the skill dimension requires individual observation of the education level of
workers and education-specific plant fixed effects.
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education group is related to population size. In the IV model, the
strength of matching among the college educated increases with city size,
while there is no significant relationship between city size and assortative
matching for low-educated workers.10 The coefficient for the college
educated equals 0.09 and is significant at 1% level. The implication is
that doubling the regional population size leads to an increase in assor-
tative matching for this group by 9 percentage points, as measured by the
correlation coefficient of worker and plant fixed effects.11 Comparing the
OLS and IV point estimates for the college educated, the difference in-
dicates 47% downward OLS-bias.12 We acknowledge that we have not
shown that the difference is statistically significant, and it is well known
that the degree of imprecision increases when the instrument variable
approach is used. To back up our understanding of bias, we show the
rejection of exogeneity in a Wu-Hausmann test for the college
educated.13 The importance of separating the plant fixed effects for the
education groups is shown by comparing the results to the case where FEs
are estimated jointly for all workers, given in panel B of Table 2. When
plant fixed effects are not allowed to differ by level of education, the
positive effect of city size on matching for the college educated is halved
and is only significant at 10% level. The difference between education
groups is less clear in the aggregate model.

The analysis above investigates the relationship between continuous
labor market size and strength of assortative matching. In an alternative
formulation, we study how the matching varies across groups of cities
dependent of population size – large cities, small cities, and periphery.
We instrument the large city group with the historical mines, and the first
stage estimates are reported in column (2) of Table 3. The mines are
strongly related to the large city group. The results of the OLS and IV
estimates of the labor market size effect in Table 4 show strong assor-
tative matching for the college educated concentrated to large cities,
while there is no significant difference between small cities and the
periphery.

We investigate historical population size as an alternative instrument,
as reported in Appendix Table B.3. Three alternative years are reported,
1875, 1910 and 1952. The first stage regressions are shown in columns
5–7 in Table 3, and we see that all coefficients are close to and somewhat
above 1. The F-values are definitely large, increasing from 148 using
1875 to 873 using 1952. The 1952-estimates in Table B.3 are all below
the OLS estimates shown in Panel A of Table 2. Using this instrument, the
OLS bias is positive. When the historical year is moved backwards, to
1910 and 1875, the estimates for all workers and the college educated are
increasing, and they indicate negative OLS bias using 1875. The 1875
estimates are still lower than the estimates we get when using the mining
instrument.

A pertinent question is whether historical mines pick up the effects of
fundamentals. Combes et al. (2010) and Rosenthal and Strange (2008)
exploit geology to generate IVs for fundamentals. They emphasize how
geology acts through a supply side channel, as discussed by Ahlfeldt and
Barr (2022) – stable soil types help reduce the cost of floor space supply.
We investigate the relationship between mining and natural features by
including geographic and weather controls in the first stage estimation of
the relationship between historical mines and population size. The
covariates include geographic variables (region size in square km,
average slope, km of coastline and mountainous area share) and climate
variables (January temperatures, wind speed, amount of precipitation).
12 Scatterplots of the OLS estimation, the first stage, the second stage, and the
reduced form estimation of the main specification are given in Figures C.12 –

C.21 in the separate online appendix. When we assess the indicated OLS bias
based on the confidence intervals of the parameters, we find that 95 percent
confidence intervals are overlapping and that the confidence interval of the IV
estimate encompasses the OLS parameter of population size.
13 The Wu-Hausmann test of exogeneity is reported in Table 2, and we can
reject the null hypothesis of exogeneity at less than 6% level for the college
educated.



Table 4
Alternative model specification: City dummies.

Dependent variable: Correlation of worker and plant FE

All (1) Primary (2) High school
(3)

College (4)

OLS:
Large
cities

0.094***
(0.032)

0.075**
(0.037)

0.031
(0.041)

0.179***
(0.03)

Small
cities

0.023
(0.024)

0.002
(0.025)

0.025
(0.036)

0.031
(0.024)

R2 0.061 0.028 0.007 0.157
IV-2SLS:
Large
cities

0.112
(0.073)

0.048
(0.084)

0.059
(0.096)

0.254***
(0.096)

Small
cities

0.025
(0.026)

�0.001
(0.026)

0.028
(0.038)

0.038
(0.025)

Notes: The dependent variable is the correlation between worker and plant fixed
effects at the regional level (N ¼ 88). In columns (2)–(4), the fixed effects are
estimated separately for three subgroups of workers defined by the level of ed-
ucation. Large cities are regions with population above 150,000 in 2003 (7 re-
gions), while small cities are regions with population in the range
65,000–150,000 (13 regions). The reference category is the remaining 68 re-
gions. In the IV estimations, only the large city indicator is instrumented. The first
stage estimation is given in column (2) of Table 3. Robust standard errors are in
parentheses. ***, ** and * indicate significance at the 1 percent, 5 percent and 10
percent level, respectively.

Table 5
City size and strength of assortative matching: Heterogeneity across occupation
tasks.

Dependent variable: Correlation of worker and plant FE

Non-routine manual
(1)

Routine (2) Non-routine abstract
(3)

OLS:
Log
population

�0.001
(0.022)

�0.011
(0.017)

0.043***
(0.014)

R2 0.000 0.004 0.085
IV-2SLS:
Log
population

0.013
(0.035)

�0.031
(0.034)

0.056**
(0.023)

Notes: The dependent variable is the correlation between worker and plant fixed
effects at the regional level (N ¼ 88). The fixed effects follow from individual
level AKM estimations during 2003–2010 of the log hourly wage on worker ef-
fects, plant effects, education-specific cubic age profiles, job tenure, and year
dummies. The fixed effects are estimated separately for three subgroups of
workers defined by the task content of their occupation. We separate between
non-routine manual, routine and non-routine abstract occupations. The regional
population level is measured in 2003. In the IV-estimations, the instrument for
log population is the number of historical mines opened before the 19th century.
The first stage estimation is given in column (1) of Table 3. Robust standard
errors are in parentheses. ***, ** and * indicate significance at the 1 percent, 5
percent and 10 percent level, respectively.

Table 3
First stage IV estimation.

Log population
(1)

Large city dummy
(2)

Log population
(3)

Log population
(4)

Log population
(5)

Log population
(6)

Log population
(7)

Historical mines 0.288***
(0.068)

0.104***
(0.03)

0.232***
(0.065)

0.287***
(0.064)

Small city dummy �0.064
(0.042)

Log population 1875 1.095***
(0.09)

Log population 1910 1.132***
(0.047)

Log population 1952 1.147***
(0.039)

Herfindahl index �10.1***
(2.159)

Geographic and weather
controls

Y

Observations 88 88 88 88 88 88 88
R2 0.148 0.255 0.349 0.355 0.707 0.816 0.917
F statistic 18.04 12.45 12.91 20.08 148.29 581.87 873.69

Notes: In column (2), the dependent variable is the large city dummy defined in the notes to Table 1, while in the other columns, the dependent variable is regional
population size in 2003 (log form). In columns (1)–(4), the instrument is the number of historical mines opened before the 19th century, while historical population size
(measured in 1875, 1910 or 1952) is the instrument in columns (5)–(7). In column (3), a Herfindahl index for industry concentration is included as control variable.
Column (4) includes covariates on geographic and weather fundamentals: geographic variables (region size, average slope, km of coastline and mountainous area share)
and climate variables (January temperature, wind speed, amount of precipitation). Robust standard errors are in parentheses. ***, ** and * indicate significance at the 1
percent, 5 percent and 10 percent level, respectively.
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The first stage coefficient of the historical mines instrument is not much
affected, as shown in Table 3 column 4, and the instrumented effect of
city size including these covariates on fundamentals does not affect the
matching results (documented in Table B.3, to be compared with
Table 2). The inclusion of geographic fundamentals does not change the
relationship between instrumented city size and matching. This result
strengthens the interpretation that the mining instrument captures path
dependence consistent with Bleakley and Lin (2012). In a broader
context, we refer to the recent reviews of Combes and Gobillon (2015)
and Ahlfeldt and Pietrostefani (2019). They conclude that sorting is the
more pressing issue when it comes to estimating agglomeration effects
than unobserved locational fundamentals. The importance of sorting for
geographic wage disparities are examined in a decomposition analysis
below.

While we concentrate on skill differences in accordance with the
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agglomeration literature, the heterogeneity of occupation tasks is of in-
terest as part of the understanding of polarization of the labor market.
Fredriksson et al. (2018) apply a modified AKMmodel to study matching
of workers and jobs, where the latter is understood as tasks performed
within firms. Our more limited ambition is to study whether a differen-
tiation with respect to tasks produces results consistent with the formal
skill dimension. Education levels and occupation tasks measure different,
but related, aspects of skill heterogeneity. We follow the convention of
separating between three groups: non-routine manual, routine, and
non-routine abstract occupations. The overlap between education level
groups and occupation task content varies, but is particularly strong for
the college educated. As reported in Table A.2, about 80% of
college-educated workers have non-routine abstract work and the college
educated account for 57% of workers in this task group. The estimates of
the city size effect on assortative matching for workers by occupations
are reported in Table 5 and show that it is significant only for workers
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with non-routine abstract tasks. The importance of city size for matching
is consistent between the two classifications of worker groups (by skill
level or occupation tasks). Doubling city size increases the correlation
between worker and plant quality by 9 percentage points for the college
educated (as shown in Table 2). When workers are separated by occu-
pation tasks, the corresponding effect of city size on matching for
non-routine abstract tasks equals 5.6 percentage points. Since 57% of
workers in non-routine abstract occupations are college educated, we
expect a lower effect of city size for non-routine abstract occupation if the
effect is driven by the college educated. Matching for workers with
non-routine manual and routine tasks do not vary by city size, and these
worker groups have much lower share of college educated.

We have pursued the identification issues to learn more about the
underlying adjustment mechanisms. In a discussion of the endogeneity of
labor market scale, Combes et al. (2008, 2010) emphasize two-way
causality. Larger labor markets have been found to be more productive
and are therefore more likely to attract firms and workers, which in turn
increase the labor market scale. Reverse causality suggests an upward
bias of OLS estimates. But bias can also be related to omitted variables.
There may be unobserved traits of the region that have a positive rela-
tionship to population size and negative relations to degree of assortative
matching (or vice versa). In this case, the OLS estimate would be
downward biased. Our OLS and IV point estimates indicate such a
negative bias. Broadly, urban amenities that compensate for wages may
deflate the measured fixed effect. Better amenities in larger cities may
reduce wages of high quality workers and look like bad matches with
high quality firms. Industry composition may be another source of
omitted variable bias. Small regions with specialized high-return in-
dustries may exhibit high assortative matching and attenuate the scale
effect. Inspection of the regional data shows quite a few regions with
small population that are dominated by a single industry (typically
resource based, many of them linked to waterfalls and electricity pro-
duction in fjords and valleys) and have a specialized and well-matched
workforce. Another factor that may dilute the scale effect is the struc-
ture of the education market. The larger universities are in urban areas
and provide specialized educations that match well with specific job-
s/occupations. Specialization of jobs have been found to be higher in
cities (Duranton and Jayet, 2011). Mismatch may then occur when per-
sons graduating with these educations settle temporarily for sub-optimal
matches waiting for better job opportunities to arise. Inspection of data
for the regions again indicates that this may be important for some larger
regional ‘college cities’. More broadly, there are some large city regions
with heterogenous private industries and many public sector jobs (not
included in the analysis) that have less correlation between worker and
firm quality. The larger gap between IV and OLS point estimates among
college-educated workers compared to the aggregate results may follow
from the ‘college city’ effect discussed above.
Table 6
Decomposition of spatial wage differences: The role of assortative matching, worker

90-10 (1)

Observed spatial wage dispersion 0.24
% differen

No assortative matching:
a) Homogeneous matching across regions, covr ðμi;φJði;tÞÞ ¼ 0 �2.9
b) Zero elasticity of city size and assortative matching �0.4
No spatial sorting of workers: μr and σ2μðrÞ equal across regions �57.4

No spatial sorting of plants: φr and σ2φðrÞ equal across regions �33.1

% differen
No spatial sorting of workers and homogeneous matching across regions �5.8

Notes: Geographic wage differences are measured by the 90–10 quantile difference (c
3), and the urban wage premium (using log population in 2003) estimated by OLS and
population is the number of historical mines opened before the 19th century. The first
averages into equation (4). Based on counterfactual exercises (described in the text), t
sorting, and plant sorting to the spatial wage dispersion.
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5. The importance of assortative matching for urban wage
premium: decomposition

Labor markets differ with respect to skill composition of workers and
consequently we expect the matching between workers and plants to
reflect differences both at the supply and the demand side. Our main
result implies that the market for the college educated takes advantage of
larger city regions to achieve better quality matches between workers
and plants. The result is consistent with the agglomeration literature
discussed in the introduction – the college educated are overrepresented
in larger cities (Bacolod et al., 2009) and the agglomeration effect is
larger for college-educated workers (Carlsen et al., 2016). The urban
wage premium has been shown to be smaller for workers with lower
education. For primary- and high school-educated workers, we find that
the strength of assortative matching does not vary with regional popu-
lation size, and this may contribute to the explanation of the lower
agglomeration effect for the low educated shown in the literature.

We offer a decomposition analysis of the spatial wage dispersion
allowing for separation of the contributions from assortative matching,
worker sorting, and plant sorting. The mean log wage in city region r
follows from equation (1) as:

Er ½ln wit � ¼Er

�
μi þφJði;tÞ þXitβ

�
(3)

As in Dauth et al. (2022), the mean wage in city region r can then be
written as:

Er

�
w
�
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where μr , φr and Xr are mean values of worker fixed effects, plant fixed
effects and worker characteristics in region r, while σ2μðrÞ, σ

2
φðrÞ and σ2XβðrÞ

are the corresponding variances. The average observed wage level in
each region is calculated from equation (4) and geographic wage dif-
ferences are described by five measures: 90–10 quantile difference,
75–25 quartile spread, the standard deviation, and the urban wage pre-
mium estimated given population size in 2003 using both OLS and IV.
Broadly, the observed spatial wage dispersion in Norway shown in row 1
of Table 6 is similar to the observations for Germany given by Dauth et al.
(2022). The 90–10 quantile difference equals 0.24, while the urban wage
premium elasticity equals 0.055 (OLS estimation).

Counterfactual experiments are made to detect the relative impor-
tance of assortative matching, worker sorting and plant sorting. The
importance of matching is analyzed using two experiments (documented
in rows 2 and 3 of Table 6). First, we assume homogenous matching
across regions by setting the covariance between worker and plant fixed
sorting, and plant sorting (aggregate).

75-25 (2) s.d. (3) UWP OLS (4) UWP IV (5)

0.153 0.1 0.055 0.075
ce to the observed wage dispersion:

�1.3 �3.2 �2.2 �2.3
�3 �0.8 �3.1 �2.3
�58 �58.8 �70.7 �73.8

�37.7 �30.4 �28.8 �28.2

ce to wage dispersion corrected for spatial sorting of workers:
�3.8 �8 �7.1 �8.2

olumn 1), the 75–25 quartile spread (column 2), the standard deviation (column
IV (columns 4 and 5, respectively). In the IV estimations, the instrument for log

row reports the observed spatial wage dispersion, calculated by inserting regional
he following rows document the contribution from assortative matching, worker



Table 7
Decomposition of spatial wage differences by level of education: The role of assortative matching, worker sorting, and plant sorting (non-college vs. college-educated
workers).

90–10 75–25 s.d. UWP OLS UWP IV

Panel A: Workers without college education
Observed spatial wage dispersion 0.227 0.13 0.084 0.033 0.037

% difference to the observed wage dispersion:
No assortative matching:
a) Homogeneous matching across regions, covr ðμi;φJði;tÞÞ ¼ 0 �2.9 �4.5 �4.5 �2.5 �2.4
b) Zero elasticity of city size and assortative matching �0.7 0.6 �0.4 �2.8 �2.5
No spatial sorting of workers: μr and σ2μðrÞ equal across regions �48.9 �51.3 �48.8 �62.6 �70.2

No spatial sorting of plants: φr and σ2φðrÞ equal across regions �36.8 �40 �36.3 �36 �36.7

% difference to wage dispersion corrected for spatial sorting of workers:
No spatial sorting of workers and homogeneous matching across regions �9.7 �5.7 �9.5 �6.4 �8.1

Panel B: College-educated workers
Observed spatial wage dispersion 0.27 0.16 0.105 0.062 0.088

% difference to the observed wage dispersion:
No assortative matching:
a) Homogeneous matching across regions, covr ðμi;φJði;tÞÞ ¼ 0 �7 �5.4 �5.5 �5 �6.8
b) Zero elasticity of city size and assortative matching �4 �1.1 �3.1 �9.8 �6.9
No spatial sorting of workers: μr and σ2μðrÞ equal across regions �63.3 �65.8 �60.5 �74.9 �69.2

No spatial sorting of plants: φr and σ2φðrÞ equal across regions �17.7 �30.6 �18.6 �20.8 �23.5

% difference to wage dispersion corrected for spatial sorting of workers:
No spatial sorting of workers and homogeneous matching across regions �16.8 �13.3 �13 �20.5 �22.4

Notes: We separate between college-educated workers and workers without college education (primary or high school). For further descriptions, see the notes to Table 6.
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effects equal to zero in all regions ðcovrðμi;φJði;tÞÞ ¼ 0Þ: Second, we
impose zero elasticity of matching on city size by replacing the covari-
ance between fixed effects with the residual from a regression of the
covariance against population size using IV estimation. Recalculating
regional wages and the different measures of spatial wage dispersion in
these two counterfactual alternatives, we show that assortative matching
explains only 2–3% of the observed geographic wage differences. The
importance of worker sorting is studied by assuming that the worker
fixed effects have the same distribution in all regions (μr and σ2μðrÞ set

equal across regions). The same is assumed for plant fixed effects to study
the relative importance of spatial sorting of plants. The results are pre-
sented in rows 4 and 5 of Table 6 and show that the main explanatory
factors behind observed regional wage differences are spatial sorting of
workers and plants, which accounts for 60–70% and 30–35% of wage
differences, respectively. In the final row of Table 6, we calculate the
relative importance of matching for the urban wage premium corrected
for worker sorting. We compare the spatial wage dispersion in the case of
no sorting of workers (similar distribution of worker fixed effects across
regions) to the case where we assume away both spatial sorting of
workers and assortative matching (covariance between fixed effects set
equal to zero in all regions). The agglomeration elasticity adjusted for
worker sorting and estimated with IV equals 0.0196 (consistent with
findings in the literature). Assuming homogeneous matching across re-
gions reduces the elasticity to 0.018, which implies that assortative
matching accounts for 8% of the corrected urban wage premium.

Investigating the role of education in this setting, we simplify the
analysis by comparing workers without college education and college-
educated workers. The results are reported in Table 7, where panel A
represents workers without college education and panel B refers to the
college educated. The agglomeration elasticity adjusted for worker
sorting and estimated with IV equals 0.027 and 0.011 for high- and low-
educated workers, respectively. Assuming homogeneous matching across
regions reduces these elasticities to 0.021 and 0.01, respectively. This
implies that assortative matching accounts for 22% of the urban wage
premium for the college educated compared to only 8% of the urban
wage premium for workers without college education. Assortative
matching matters more for the college educated. The corresponding
difference in agglomeration elasticities between the two education
groups decreases from 0.016 to 0.011, which implies that better
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assortative matching in cities for the college educated compared to the
non-college educated explains about 1/3 of the difference in urban wage
premia between the two education groups. When the decomposition of
spatial wage differences is based on common estimation of plant fixed
effects rather than education-specific estimation, assortative matching
cannot explain the difference in urban wage premium between the two
education groups. This shows that the plant fixed effects should be
allowed to vary between education levels to capture important
heterogeneity.

6. Robustness: limited mobility bias

The AKM-model applied to estimate assortative matching has chal-
lenges related to limited mobility bias and interpretation of the plant
effects. The plant fixed effects are identified based on job switchers, and
the estimates may be noisy when mobility is low. Thus, the relationship
between the strength of matching and local labor market scale may
potentially be biased. We investigate the importance of small plants and
few switchers to throw more light on the limited mobility problem.
Several methods are applied to test the sensitivity of results to limited
worker mobility, including adjustments to the specification and the
sample. The analyses are based on the model assuming separate plant
fixed effects for the different levels of education and with continuous
labor market size effect.

We start the investigation by studying alternative cutoffs for the
exclusion of small plants. In the main analyses, we exclude plants with
five or fewer workers. Table 8 reports four alternatives. Panel A includes
all plants in the dataset, panel B excludes plants with 2 or fewer workers,
panel C excludes plants with 7 or fewer workers, and panel D excludes
plants with 10 or fewer workers. As shown in the table, the number of
plants is strongly reduced when the cutoff is increased. The total dataset
has about 118,000 plants, but this is reduced to 16,000 when plants with
10 or fewer workers are excluded. The number of workers is much less
affected. As discussed in section 2, the cutoff is important for the share of
regions with positive correlation between worker and plant fixed effects.
A higher cutoff means a higher share of positive correlations, which is
considered more economically plausible. The effect of population size for
the strength of matching is very similar across alternative cutoffs with IV-
estimates for the college educated that vary between 0.075 and 0.095.



Table 9
Robustness checks.

Dependent variable: Correlation of worker and plant FE

All (1) Primary (2) High school
(3)

College (4)

Panel A: Correlation between μi þ Xitβ and plant FEs
Log population
(IV-2SLS)

0.033
(0.023)

0.012
(0.028)

0.003
(0.03)

0.097***
(0.03)

Panel B: Excluding outliers in the FE distributions
Log population
(IV-2SLS)

0.03*
(0.017)

0.015
(0.022)

0.004
(0.019)

0.069***
(0.022)

Panel C: Plant FEs purged for industry fixed effects
Log population
(IV-2SLS)

0.055**
(0.023)

0.031
(0.027)

0.044
(0.03)

0.103***
(0.029)

Panel D: Herfindahl index for industry concentration included as control variable
Log population
(IV-2SLS)

0.039
(0.029)

0.023
(0.037)

0.025
(0.041)

0.099***
(0.036)

Panel E: Plant FEs purged for average plant size
Log population
(IV-2SLS)

0.025 (0.02) 0.016
(0.027)

0.014
(0.027)

0.09***
(0.026)

Panel F: Worker FEs purged for occupation fixed effects
Log population
(IV-2SLS)

0.037
(0.024)

0.018
(0.03)

0.01
(0.035)

0.099***
(0.029)

Panel G: Largest connected group
Log population
(IV-2SLS)

0.038*
(0.023)

0.017
(0.029)

0.018
(0.033)

0.088***
(0.028)

Notes: The table presents robustness checks on the regressions in panel A of
Table 2. In columns (2)–(4), the fixed effects are estimated separately for each
education level. In panel A, the dependent variable is the correlation between
worker fixed effects plus observable worker characteristics and plant fixed ef-
fects. In panel B, we exclude workers that are in the top or bottom 1% of the
distribution of worker and/or plant fixed effects. In panel C, the dependent
variable is the correlation between worker and residual plant fixed effects at the
regional level, where the residual plant effects are the residuals from a regression
of the plant effects on 2-digit industry effects. In panel D, a Herfindahl index for
industry concentration is included as control variable in the regional level re-
gressions. In panel E, the dependent variable is the correlation between worker
and residual plant fixed effects at the regional level, where the residual plant
effects are the residuals from a regression of the plant effects on average plant
employment size. In panel F, we purge 2-digit occupation fixed effects from the
worker fixed effects and use the correlation between residual worker fixed effects
and plant fixed effects as the dependent variable. In panel G, only the largest
connected group is included in the estimation of fixed effects. In all panels, the
instrument for log population is the number of historical mines opened before the
19th century. For panel D, the first stage estimation is given in column (3) of
Table 3, while for all other panels, the first stage estimation is given in column (1)
of Table 3. Robust standard errors are in parentheses. ***, ** and * indicate
significance at the 1 percent, 5 percent and 10 percent level, respectively.

Table 8
Alternative cutoff level for exclusion of small plants.

Dependent variable: Correlation of worker and plant FE

All (1) Primary (2) High school
(3)

College (4)

Panel A: Including all plants independent of size (117,684 plants and 1,218,862 workers)
Log population
(IV-2SLS)

0.053**
(0.022)

0.033
(0.024)

0.042
(0.028)

0.092***
(0.028)

Panel B: Excluding plants with 2 or fewer workers (72,566 plants and 1,157,256 workers)
Log population
(IV-2SLS)

0.049**
(0.022)

0.035
(0.027)

0.035
(0.03)

0.088***
(0.029)

Panel C: Excluding plants with 7 or fewer workers (23,154 plants and 937,777 workers)
Log population
(IV-2SLS)

0.042*
(0.024)

0.02
(0.035)

0.012
(0.035)

0.095***
(0.029)

Panel D: Excluding plants with 10 or fewer workers (15,676 plants and 856,743 workers)
Log population
(IV-2SLS)

0.019
(0.022)

0.026
(0.033)

�0.011
(0.035)

0.075***
(0.025)

Notes: The table presents robustness checks on the cutoff level for exclusion of
small plants. The main regressions in Table 1 exclude plants with five or fewer
workers, which leaves 32,760 plants and 1,008,170 workers. Panels A–D esti-
mate the effect of city size on the strength of assortative matching for alternative
cutoff levels with respect to plant size. The dependent variable is the correlation
between worker and plant fixed effects at the regional level (N ¼ 88). In columns
(2)–(4), the fixed effects are estimated separately for each education level. In
each panel, the fixed effects are re-estimated given the new sample. The regional
population level in 2003 is instrumented with the number of historical mines
opened before the 19th century. The first stage estimation is given in column (1)
of Table 3. Robust standard errors are in parentheses. ***, ** and * indicate
significance at the 1 percent, 5 percent and 10 percent level, respectively.
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This indicates that the limited mobility bias does not vary systematically
with population size.14

An alternative strategy is to exclude plants based on the education-
specific plant size (number of workers in the respective education
group).15 There are two disadvantages of such an approach. First, the
common set of plants across the three education groups is reduced. While
a general cutoff level based on the total number of workers excludes the
same plants for all education groups, an education-specific cutoff gives
separate plant samples for each education group (and could make results
less comparable across groups). Second, compared to a general cutoff
level, the sample is reduced much more when using an education-specific
cutoff. Figure B.2 illustrates the loss of observations for the college
educated for alternative general and education-specific cutoff levels. A
general cutoff level at 5 (excluding plants with 5 or fewer workers) leaves
88% and 45% of the worker and plant sample, respectively. The same
cutoff level for the number of college-educated workers in plants implies
that only 75% and 15% of the worker and plant samples remain. An
education-specific cutoff at 2 would entail about the same loss of ob-
servations as the general cutoff at 5. The two other education groups have
similar patterns, as documented in Figures C.25 – C.26 in the online
appendix. The consequences of different assumptions about the
education-specific cutoff for the city-size effects on matching are shown
in Appendix Table B.5. The main conclusion of the paper, the positive
and statistically significant association between regional population size
and the degree of assortative matching for the college educated is robust
across cutoff values. With an education-specific cutoff at 2, the size of the
effect is the same and a similar number of observations are excluded as
with a general cutoff at 5. When the education-specific cutoff level is set
14 An alternative exclusion criterium is investigated in Table B.4 in Appendix
B, where the cutoff is based on few mobility events rather than the size of the
plant. The main conclusion holds in all four alternatives investigated in the table
(from 2 or fewer job mobility events to 10 or fewer) – matching of college-
educated workers is increasing with population size.
15 Figures C.22 – C.24 in the online appendix illustrate a positive relationship
between education-specific correlations of fixed effects and the minimum
education-specific plant size.
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higher, the size of the effect goes down and eventually becomes insig-
nificant when a sizeable share of the sample is dropped.

Further robustness checks are reported in Table 9 (starting out from
the main dataset). In panel A, the dependent variable is the correlation
between worker fixed effects plus observable worker characteristics and
plant fixed effects. Using a broader measure of worker quality (taking
observable worker characteristics into account) does not alter the base-
line findings. In panel B, we apply a more direct approach to address
noisy estimates that originate from limited mobility by excluding the top
and bottom percentile of the fixed effects distributions. The results do not
change noteworthy and the city region size effect is still significant only
for the college educated. As the plant fixed effects also include time-
invariant characteristics, a concern is that the estimated relationship
with urban scale reflects industry differences. In Panel C, we purge the
plant FE of industry influences by regressing them on 2-digit industry
fixed effects and use the residual plant fixed effects in the correlation
with worker FE. The results are similar to the main analysis with an effect
concentrated to the college educated. Industry concentration may also
influence both matching opportunities and population size. In panel D,
we include a Herfindahl index of industry concentration as control var-
iable. The additional control does not affect the estimated effect for
college-educated workers.
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It is of interest to investigate whether the large city assortative
matching result is the effect of large plants. Given the estimated fixed
effects from the AKM estimation, we purge average plant employment
size from the plant fixed effects. This robustness test is documented in
panel E of Table 9. The average plant size explains little of the variation in
plant fixed effect (with R-squared in the range 0.04–0.12). Another issue
investigated using the same method concerns occupations. We purge 2-
digit occupations from the worker fixed effects, and the new estimates
are shown in panel F of Table 9. The 2-digit occupation explains little of
the variation in worker fixed effects (the R-squared in the range from
0.09 to 0.27). For the college educated, occupation group explains 20%
of worker fixed effects. We acknowledge that this approach only captures
the role of occupation within each level of education, while it is more
challenging to identify the importance of occupations for the difference
between educational groups (since not many occupations overlap be-
tween the three levels of education). Finally, in panel G of Table 9, we
include only the largest connected group in the analysis. This gives a
more correct comparison of fixed effects, but since very few observations
are unconnected, the main results are not affected.16

Next, we pursue an alternative approach to cutting the sample based
on clustering of plants. In this analysis, we therefore apply all plant ob-
servations in the data (including plants with five or fewer workers).
Bonhomme et al. (2019, 2022) suggest to cluster firms to increase sta-
tistical support. Following this reasoning, we estimate a fixed-effect
model where all plants are allocated to clusters with similar wage
structures and take benefit of the higher mobility of workers between
these clusters. As in the application of Dauth et al. (2022), we charac-
terize the wage structure in each plant by 20 and 40 wage quantiles and
use a k-means clustering technique to classify plants into 10, 15 and 20
clusters. Ongoing research develops methods of bias correction to miti-
gate possible limited mobility bias, notably Bonhomme et al. (2020). This
is especially important when the role of firm effects for wage inequality is
evaluated. Interestingly, the covariance results resemble those of Bon-
homme et al. (2020) with bias correction, easing the concern of down-
ward bias caused by insufficient worker mobility.17

The clustered plant estimation washes out much of the plant het-
erogeneity and is therefore a harsh test of result robustness to limited
mobility bias. Nonetheless, as can be seen from panels A–F of Appendix
Table B.6, the overall conclusions hold for most specifications. There is a
positive urban gradient in assortative matching that seems to originate
from the outcomes of college-educated workers. However, the estimated
coefficients are generally lower (about a half of the baseline for the full
sample and a fourth for the college sample). The reduction in coefficients
suggests that the limited worker mobility may cause an upward bias in
the relationship between city size and assortative matching. In panel G of
Table B.6, the clustering is concentrated to small plants (10 or fewer
workers) and based on industry and location. The rationale being that
plants operating within the same activity in the same local market should
have comparable productivity. In this case, the effect of population size
for the college educated is somewhat larger.

The leave-out estimator developed by Kline et al. (2020) is a major
contribution to the estimation of two-way fixed effects for the aggregate
economy. Unfortunately, the estimator is not developed for backing out
correlations between worker and plant fixed effects for separate regions
with inter-regional mobility. Noting that the samples and estimates are
16 Unconnected worker-year observations that are removed from the analysis
account for only 0.17% of the aggregate sample. When fixed effects are esti-
mated separately for each education group, the share of unconnected observa-
tions equals 4.79%, 0.97% and 1.77% for primary, high school and college-
educated workers, respectively.
17 The correlation between worker and plant cluster fixed effects is 39 percent
for the full sample and ranges from 27 to 36 percent for the education groups.
The correlation increases in education level suggesting stronger sorting effects
for highly educated workers.
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not directly comparable, Dauth et al. (2022) run the estimator for each
region in Germany (with plant effects only identified from within-region
mobility) and find fairly similar results as when using the AKM model.
The general pattern is that the correlations between fixed effects shifts
upwards, but the population gradient is close to unchanged. However,
the observations across regions are then not linked and the estimated
fixed effects are not comparable. We suggest mitigating limited mobility
bias by excluding plants in the bottom of the employment size distribu-
tion. In this way, fixed effects are still estimated based on inter-regional
mobility. Using different plant size cutoffs, we show that correlation
between fixed effects increase in plant size cutoff value while the popu-
lation gradient on assortative matching is more or less unchanged (as
documented in Fig. 2 and Table 8). The similar pattern as described by
Dauth et al. (2022) comparing the leave-out and AKM estimators may be
incidental, but indicates that the gradient with respect to urban scale is
robust across settings, samples and estimators.

7. Assortative matching heterogeneity: gender and age

In the following, we explore if there are other traits of workers in
conjunction with education that may explain the results. We focus on
worker heterogeneity with respect to gender and age. Gender differences
at the labor market have been studied in the context of urbanization and
regional size. Hirsch et al. (2013) deal with regional differences in the
gender pay gap, while Phimister (2005) analyzes the urban wage pre-
mium by gender. They find that the gender pay gap is lower in cities and
the urban wage premium is larger for women, respectively. Based on
worker and plant fixed effects estimated separately for the three educa-
tion groups, we find that both male and female college-educated workers
take advantage of larger labor markets, as documented in panel A of
Table 10. The point estimate of city size on assortative matching is
somewhat higher for college-educated men than for college-educated
women, but the difference is not statistically significant. The main
gender difference is that assortative matching among female workers
with high school education also is increasing with regional population
size. Consequently, a larger share of the female worker population in
cities may display better matching compared to men. While not conclu-
sive, these results are in line with higher urban wage premium for women
found in Phimister (2005).

As a further analysis of the gender heterogeneity, we estimate group-
specific fixed effects at a more detailed level. We allow for different as-
sortative matching for each education-gender group, where the fixed
effects are estimated separately for six worker groups combining gender
and three levels of education. The results confirm the gender pattern –

the population size matters for the matching of male and female college-
educated workers and also for high school educated women.18

Following the literature on job search, we expect workers early in
their career to have imperfect information about their own preferences
and abilities. They are therefore expected to experience worse matches
early in their career relative to later. Yankow (2009) shows that workers
tend to find more productive job matches over time. Because of data
censoring (first observations are in 2003), we have limited knowledge
about individual work histories. However, we can infer that younger
workers have come shorter in the search process for better job matches.
In panel B of Table 10, we split the workforce into four age categories:
25–34, 35–44, 45–54 and 55–65. We obtain the same conclusion as from
the first part of the paper, positive urban assortative matching is
concentrated to college-educated workers. Among these, in line with our
expectations, the youngest age group has the lowest score and the
magnitude of effect is largest (and most significant) for workers of in-
termediate ages (35–54 years of age).
18 The point estimate of city size on assortative matching is about 0.08 for both
male and female college-educated workers (significant at 1% level) and equals
0.064 for high school educated women (significant at 5% level).



Table 10
City size and strength of assortative matching: Heterogeneity by gender and age.

Dependent variable: Correlation of worker and plant FE

Primary (1) High school (2) College (3) Primary (4) High school (5) College (6)
Panel A: Gender heterogeneity

MEN WOMEN
Log population (IV-2SLS) 0.017

(0.029)
0.029
(0.032)

0.091***
(0.029)

0.024
(0.019)

0.032**
(0.016)

0.055***
(0.016)

Panel B: Age heterogeneity
AGE 25–34 AGE 35–44

Log population (IV-2SLS) �0.015
(0.029)

�0.007
(0.028)

0.056**
(0.024)

0.054
(0.049)

0.049
(0.041)

0.127***
(0.038)

AGE 45–54 AGE 55–65
Log population (IV-2SLS) 0.007

(0.035)
0.01
(0.03)

0.095***
(0.033)

�0.052
(0.039)

�0.001
(0.052)

0.08**
(0.038)

Notes: The dependent variable is the correlation between worker and plant fixed effects at the regional level (N¼ 88) for subgroups of workers defined based on level of
education, gender, and age. The fixed effects are estimated separately for each education level and follow from individual level AKM estimations during 2003–2014 of
the log hourly wage on worker effects, plant effects, education-specific cubic age profiles, job tenure, and year dummies. The regional population level in 2003 is
instrumented with the number of historical mines opened before the 19th century. The first stage estimation is given in column (1) of Table 3. Robust standard errors are
in parentheses. *** indicates significance at the 1 percent level.

S. Leknes et al. Regional Science and Urban Economics 96 (2022) 103806
8. Concluding remarks

The education level of workers has been found to impact the urban
wage premium. Recent evidence shows that superior labor matching may
be a potential source of the premium, but has not been put in relation to
formal skills. Using rich administrative data for Norway linking workers
and plants, we study if there is a skill-heterogeneous relationship be-
tween assortative matching and city size. Workers are separated by ed-
ucation level – primary, high school and college. The method innovated
by Abowd et al. (1999), the AKM-model, is employed to estimate
two-way worker and plant fixed effects, from which we derive measures
of the strength of assortative matching. The analysis addresses the
concern of possible bias related to endogeneity and omitted variables. We
instrument population size using historical mines before the 19th century
that are obsolete today. Further methodological issues are handled
related to heterogeneity of firm fixed effects and robustness for limited
mobility bias.

The analysis shows that the overall positive relationship between city
size and assortative matching is driven by college-educated workers. This
conclusion is corroborated by results for occupation-task groups as
workers conducting high-skilled work, non-routine abstract tasks,
display a similar pattern. Using a wage decomposition method, we find
that, net of worker sorting, assortative matching explains 22% of the
urban wage premium found for higher skilled workers. The analysis is
extended to address how the role of education varies across age and
gender. The relationship between city size and matching is confirmed for
Appendix A. Additional details on the dataset

The individual level dataset is computed from three administrative reg
workers and plants and gives information on work contracts for all employees.
number of hours worked per week. We calculate the number of hours worked
tax register to give a measure of hourly wages for all employees. The educatio
workers’ level of education. We also have information on the age, gender, in

We exclude workers in the primary industries (agriculture, fishing, and fore
between three contract types: full-time contracts with at least 30 h of work pe
contracts with fewer than 20 h of work per week. We concentrate on full-time
observations during 2003–2014. The tax register gives information on total
Workers with more than two contracts during a year, as well as workers with
two full-time contracts, we allow for a maximum of three months of overlap
less than one month during a year. These restrictions reduce the dataset by
earnings, level of education, or industry affiliation, together with exclusion o
full-time employees, further excludes approximately 1.9 million observations.
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both male and female college-educated workers, but female workers with
high school education also benefit from city size. Finally, we explore the
age gradient with respect to assortative matching in regions of different
sizes. College-educated workers of all ages are better matched in more
populous areas, and in particular among workers in the middle of the age
distribution.

Methodological issues remain, in particular estimating the quality of
firms. The plant fixed effects incorporate time-invariant characteristics
that may be related to labor market size. It is of interest to develop
characterizations of firms with more data about their structure and
performance.
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Supplementary data to this article can be found online at https://doi
.org/10.1016/j.regsciurbeco.2022.103806.
isters: employment, tax, and education. The employment register links
It includes the duration of the contract, the type of contract, and the exact
per year, which is combined with data on annual wage income from the
n register covers the entire adult population and gives information about
dustry affiliation, plant affiliation, and home region of all individuals.
stry), as well as public sector workers. The employment register separates
r week, part-time contracts with 20–29 h of work per week, and part-time
workers aged 25–65. This gives a dataset of about 12 million worker-year
annual earnings, rather than separate earnings for each work contract.
one full-time and one part-time contract, are excluded. For workers with
between the contracts. We also exclude workers whose contract length is
about 1.3 million observations. Missing data on hours worked, annual
f workers that change education level after entering the labor market as
To avoid extreme observations, we exclude the top and bottom 1% of the
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wage distribution. Finally, we exclude observations that do not contribute to the estimation of plant fixed effects, workers that are observed in a single
year and plants without any job switches (amounts to about 0.5 million observations). This leaves a dataset with about 8.1 million observations covering
1.2 million workers and 118,000 plants. To mitigate limited mobility bias, we exclude plants with five or fewer workers, which gives the main dataset of
about 6.5 million observations during 2003–2014 covering 1,008,170 workers and 32,760 plants.

Table A.1 below reports descriptive statistics of the individual level data, both aggregate and for three levels of education. The average hourly wage
in the dataset is 314 NOK (log wage of 5.65) and wages of primary educated and high school educated workers are, respectively, 40% and 26% below
wages of the college educated. The average age is 43 years and decreases with the level of education, from 44 years among the primary educated to 41
years among college-educated workers. Overall, 72% of workers are male, but the share is lower among the college educated. Separating between
manufacturing industries and services, about 55% of primary and high school educated workers are employed in services, increasing to 70% for the
college educated. The mean value of worker fixed effects increases with the level of education, from�0.17 among the primary educated to 0.18 among
college-educated workers (fixed effects are centered around zero overall).

We define worker groups based on occupation tasks and separate between non-routine manual, routine and non-routine abstract occupations (as
described in Acemoglu and Autor, 2011). Occupational data is available for the period 2003–2010 and includes 345 occupations. We use the occu-
pational crosswalk created by Hoen (2016) to link the Norwegian occupation codes to the occupational characteristics from the O*NET database
(version 9.0, December 2005). Task characteristics included in the three occupation task groups are given below. For each occupation, the task intensity
of manual, routine and abstract tasks is calculated as an average of the respective importance scales (range 1–5) and the occupation is included in the
task group with the highest intensity.

Non-routine manual tasks:

- 4.A.3. a.4 Operating vehicles, mechanized devices, or equipment
- 4.C.2. d.1. g Spend time using hands to handle, control or feel objects, tools or controls
- 1.A.2. a.2 Manual dexterity
- 1.A.1. f.1 Spatial orientation

Routine tasks:

- 4.C.3. b.7 Importance of repeating the same tasks
- 4.C.3. b.4 Importance of being exact or accurate
- 4.C.3. d.3 Pace determined by speed of equipment
- 4.A.3. a.3 Controlling machines and processes
- 4.C.2. d.1. i Spend time making repetitive motions

Non-routine abstract tasks:

- 4.A.2. a.4 Analyzing data/information
- 4.A.2. b.2 Thinking creatively
- 4.A.4. a.1 Interpreting information for others
- 4.A.4. a.4 Establishing and maintaining personal relationships
- 4.A.4. b.4 Guiding, directing and motivating subordinates
- 4.A.4. b.5 Coaching/developing others

Table A.2 shows the degree of overlap between education levels and occupation task content. Overall, the share of workers employed in non-routine
manual, routine and non-routine abstract occupations equal 24%, 32% and 44%, respectively. Separating by level of education, the broad picture is that
college-educated workers are overrepresented in non-routine abstract occupations (80% of the college educated belong to this group), while workers
with high school or primary education are more likely to be employed in non-routine manual or routine occupations.

Table A.1
Descriptive statistics (mean values)

All Primary High school College

Log hourly wage 5.65 5.45 5.59 5.85
Hourly wage (in NOK) 314.2 251.2 291.8 383.1
Age 42.9 44.0 43.7 40.9
Male 0.72 0.74 0.76 0.65
Manufacturing 0.41 0.44 0.48 0.30
Services 0.59 0.56 0.52 0.70
Job tenure 5.27 5.38 5.76 4.43
Worker fixed effect 0.00 �0.17 �0.05 0.18
Plant fixed effect 0.00 �0.02 �0.01 0.02
No. of workers 1,008,170 179,732 509,352 319,086
Share of workers 1.00 0.18 0.50 0.32

Notes: The values for hourly wage, age and job tenure refer to the average value across the period 2003–2014. Job tenure is calculated based on actual days worked in
the worker's present plant from 1993 onwards and is expressed in years.
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Table A.2
Overlap between education level and occupation task content

Panel A: Share of workers overall and within each education level by occupation task group

All Primary High school College

Non-routine manual 0.237 0.35 0.316 0.042
Routine 0.325 0.471 0.377 0.154
Non-routine abstract 0.438 0.179 0.307 0.804
Panel B: Share of workers overall and within each occupation task group by level of education

All Non-routine manual Routine Non-routine abstract
Primary 0.177 0.261 0.257 0.072
High school 0.514 0.684 0.597 0.361
College 0.309 0.055 0.146 0.567

Notes: Based on data for the period 2003–2010.
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Appendix B. Additional tables and figures
Fig. B.1. Regional distribution of the correlation between worker and plant FEs.
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Fig. B.2. Loss of observations for the college educated for alternative (general and education-specific) cutoff levels.

Table B.1
AKM model versus model with full set of firm-worker fixed effects

Baseline AKM-model (1) Saturated match-model (2)

Panel A: All workers
Adjusted R-squared 0.7897 0.8216
Root MSE 0.1986 0.1814

Panel B: Primary education
Adjusted R-squared 0.6816 0.7166
Root MSE 0.2180 0.2029

Panel C: High school
Adjusted R-squared 0.7680 0.7992
Root MSE 0.1916 0.1767

Panel D: College
Adjusted R-squared 0.7992 0.8301
Root MSE 0.1936 0.1763

Notes: The table shows goodness of fit by adjusted R-squared and root mean square error (RMSE) for two specifications of the wage variation in Norway: the baseline
AKM model specified by equation (1) and a corresponding specification where the firm and worker fixed effects are replaced by firm-worker fixed effects.

Table B.2
Comparison of the distributions of education-specific plant FEs

Primary vs. High school (1) High school vs. College (2) Primary vs. College (3)

Correlation between plant FEs distributions 0.19 0.19 0.10
Rank correlation between plant FEs distributions 0.26 0.26 0.15
Percent overlap of plants within each quintile:
Quintile 1 31.0 31.1 25.4
Quintile 2 24.9 24.0 23.0
Quintile 3 18.2 21.5 22.7
Quintile 4 26.1 24.8 24.0
Quintile 5 36.1 37.1 29.1
No. of plants 24,439 24,027 19,065

Notes: The table compares plant fixed effects distributions of two education groups at the time by calculating the percent overlap of plants within each quintile of the
distribution. The overall correlation and rank correlation between the two distributions is also reported. In the comparison, we only consider plants that employ workers
from both education groups.
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Table B.3
Robustness of IV estimation: Additional covariates on fundamentals and historical population size as instrument

Dependent variable: Correlation of worker and plant FE

All (1) Primary (2) High school (3) College (4)

Instrument:
Historical mines (including covariates on fundamentals) 0.046*

(0.025)
0.049
(0.033)

0.053
(0.038)

0.079***
(0.029)

Log population 1952 0.018*
(0.01)

0.018*
(0.011)

0.006
(0.014)

0.039***
(0.012)

Log population 1910 0.026**
(0.01)

0.018
(0.011)

0.019
(0.015)

0.041***
(0.012)

Log population 1875 0.035***
(0.012)

0.017
(0.013)

0.033*
(0.017)

0.05***
(0.013)

Notes: The dependent variable is the correlation between worker and plant fixed effects at the regional level (N¼ 88). In columns (2)–(4), the fixed effects are estimated
separately for three subgroups of workers defined by the level of education. In the first row, we add additional covariates on fundamentals to our main instrument for log
population (historical mines opened before the 19th century). The covariates comprise geographic variables (region size in square kilometers, average slope, km of
coastline and mountainous area share) and climate variables (January temperature, wind speed, amount of precipitation). Descriptive statistics of the variables are
found in Table C4 in the separate online appendix. In the last three rows, the instrument for log population is historical population level in 1952, 1910 and 1875,
respectively. The first stage estimations are given in columns (4)–(7) of Table 2. Robust standard errors are in parentheses. ***, ** and * indicate significance at the 1
percent, 5 percent and 10 percent level, respectively.

Table B.4
Alternative exclusion criterium: excluding plants with low job mobility

Dependent variable: Correlation of worker and plant FE
All (1) Primary (2) High school (3) College (4)

Panel A: Excluding plants with 2 or fewer job mobility events (89,803 plants and 1,306,309 workers)
Log population (IV-2SLS) 0.050**

(0.023)
0.038
(0.026)

0.019
(0.027)

0.103***
(0.031)

Panel B: Excluding plants with 5 or fewer job mobility events (54,427 plants and 1,220,085 workers)
Log population (IV-2SLS) 0.043*

(0.022)
0.037
(0.025)

�0.003
(0.028)

0.093***
(0.029)

Panel C: Excluding plants with 7 or fewer job mobility events (42,850 plants and 1,173,246 workers)
Log population (IV-2SLS) 0.043*

(0.023)
0.049
(0.030)

�0.012
(0.029)

0.104***
(0.031)

Panel D: Excluding plants with 10 or fewer job mobility events (32,230 plants and 1,113,673 workers)
Log population (IV-2SLS) 0.020

(0.019)
0.004
(0.028)

�0.032
(0.029)

0.071***
(0.024)

Notes: The table presents robustness checks of the results using alternative cutoff levels for exclusion of plants with low jobmobility. Job mobility events are measured as
the sum of switches in and out of the plant. The dependent variable is the correlation between worker and plant fixed effects at the regional level (N ¼ 88). In columns
(2)–(4), the fixed effects are estimated separately for each education level. In each panel, the fixed effects are re-estimated given the new sample. The regional pop-
ulation level in 2003 is instrumented with the number of historical mines opened before the 19th century. The first stage estimation is given in column (1) of Table 2.
Robust standard errors are in parentheses. ***, ** and * indicate significance at the 1 percent, 5 percent and 10 percent level, respectively.

Table B.5
Robustness: Excluding small plants based on the education-specific plant size

Dependent variable: Correlation of worker and plant FE
Primary (1) High school (2) College (3)

Panel A: Excluding plants with 2 or fewer workers in the respective education group
Log population (IV-2SLS) 0.017

(0.036)
0.039
(0.034)

0.084***
(0.027)

Number of workers 174,507 560,601 321,767
Number of plants 19,060 45,867 21,887
Panel B: Excluding plants with 4 or fewer workers in the respective education group
Log population (IV-2SLS) �0.022

(0.031)
0.015
(0.035)

0.048**
(0.021)

Number of workers 131,452 482,774 285,627
Number of plants 7,570 22,827 10,890
Panel C: Excluding plants with 6 or fewer workers in the respective education group
Log population (IV-2SLS) 0.033

(0.05)
0.000
(0.033)

0.042*
(0.023)

Number of workers 107,462 429,576 263,007
Number of plants 4,267 14,361 7,085

(continued on next page)
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Table B.5 (continued )

Dependent variable: Correlation of worker and plant FE
Primary (1) High school (2) College (3)

Panel D: Excluding plants with 8 or fewer workers in the respective education group
Log population (IV-2SLS) �0.024

(0.034)
�0.02
(0.033)

0.043*
(0.025)

Number of workers 91,252 390,940 246,903
Number of plants 2,804 10,237 5,214
Panel E: Excluding plants with 10 or fewer workers in the respective education group
Log population (IV-2SLS) �0.026

(0.033)
�0.016
(0.027)

0.012
(0.022)

Number of workers 79,495 360,140 233,244
Number of plants 2,016 7,744 4,068

Notes: The table presents robustness checks on the education-specific cutoff level for exclusion of small plants. The dependent variable is the correlation between worker
and plant fixed effects at the regional level (N¼ 88). The fixed effects are estimated separately for three subgroups of workers defined by the level of education. For each
education group, plants with few workers in the respective education group are excluded. In each panel, the fixed effects are re-estimated given the new sample. The
regional population level in 2003 is instrumented with the number of historical mines opened before the 19th century. The first stage estimation is given in column (1) of
Table 3. Robust standard errors are in parentheses. ***, ** and * indicate significance at the 1 percent, 5 percent and 10 percent level, respectively.

Table B.6
Clustering of plants

Dependent variable: Correlation of worker and clustered plant FE

All (1) Primary (2) High school (3) College (4)

Clustering all plants based on wage structures
Panel A: 10 clusters defined by 20 wage quantiles
Log population (IV-2SLS) 0.023*

(0.012)
0.001
(0.011)

�0.012
(0.015)

0.019*
(0.010)

Panel B: 15 clusters defined by 20 wage quantiles
Log population (IV-2SLS) 0.026**

(0.012)
0.003
(0.010)

�0.008
(0.014)

0.012
(0.010)

Panel C: 20 clusters defined by 20 wage quantiles
Log population (IV-2SLS) 0.028**

(0.012)
0.001
(0.011)

�0.006
(0.014)

0.023**
(0.011)

Panel D: 10 clusters defined by 40 wage quantiles
Log population (IV-2SLS) 0.026**

(0.012)
0.002
(0.011)

�0.006
(0.015)

0.015*
(0.009)

Panel E: 15 clusters defined by 40 wage quantiles
Log population (IV-2SLS) 0.020*

(0.011)
0.008
(0.011)

�0.009
(0.014)

0.013
(0.010)

Panel F: 20 clusters defined by 40 wage quantiles
Log population (IV-2SLS) 0.028***

(0.012)
�0.000
(0.011)

�0.004
(0.014)

0.023**
(0.011)

Panel G: Clustering small plants (10 or fewer workers) based on industry and geography
Log population (IV-2SLS) 0.031*

(0.018)
�0.001
(0.019)

�0.019
(0.03)

0.059**
(0.028)

Notes: Panels A–F classify plants into k ¼ 10, 15, 20 clusters with similar wage structures measured by 20 and 40 quantiles (following discussion in Bonhomme et al.,
2019, 2022). In panel G, small plants with 10 or fewer workers on average are clustered based on industry and geography in two steps: first, we cluster based on 2-digit
industry code and labor market affiliation. Second, we cluster the remaining small plants based on aggregate codes (1-digit industry and county). Worker fixed effects
are defined at the education level. Robust standard errors are in parentheses. ***, ** and * indicate significance at the 1 percent, 5 percent and 10 percent level,
respectively.

S. Leknes et al. Regional Science and Urban Economics 96 (2022) 103806
References

Abowd, J., Kramarz, F., Margolis, D., 1999. High-wage workers and high-wage firms.
Econometrica 67 (2), 251–333.

Acemoglu, D., 2007. Equilibrium bias of technology. Econometrica 75 (5), 1371–1409.
Acemoglu, D., Autor, D., 2011. Skills, tasks and technologies: implications for

employment and earnings. In: Ashenfelter, O., Card, D. (Eds.), Handbook of Labor
Economics, vol. 4b. Elsevier, North-Holland, pp. 1043–1171.

Ahlfeldt, G., Barr, J., 2022. The economics of skyscrapers: a synthesis. J. Urban Econ. 129,
103419.

Ahlfeldt, G., Pietrostefani, E., 2019. The economic effects of density: a synthesis. J. Urban
Econ. 111, 93–107.

Andersson, F., Burgess, S., Lane, J., 2007. Cities, matching and the productivity gains
from agglomeration. J. Urban Econ. 61, 112–128.

Andrews, M., Gill, L., Schank, T., Upward, R., 2012. High wage workers match with high
wage firms: clear evidence of the effects of limited mobility bias. Econ. Lett. 117,
824–827.

Autor, D., 2019. Work of the past, work of the future. American Economic Review Papers
and Proceedings 109, 1–32.

Autor, D., Levy, F., Murnane, R., 2003. The skill content of recent technological change:
an empirical exploration. Q. J. Econ. 118 (4), 1279–1333.
17
Bacolod, M., Blum, B., Strange, W., 2009. Skills in the city. J. Urban Econ. 65, 136–153.
Baum-Snow, N., Pavan, R., 2012. Understanding the city size wag gap. Rev. Econ. Stud.

79 (1), 88–127.
Bleakley, H., Lin, J., 2012. Portage and path dependence. Q. J. Econ. 127 (2), 587–644.
Bonhomme, S., Lamadon, T., Manresa, E., 2019. A distributional framework for matched

employer employee data. Econometrica 87, 699–739.
Bonhomme, S., Holzheu, K., Lamadon, T., Manresa, E., Mogstad, M., Setzler, B., 2020.

How Much Should We Trust Estimates of Firm Effects and Worker Sorting? NBER
Working Paper, p. 27368.

Bonhomme, S., Lamadon, T., Manresa, E., 2022. Discretizing Unobserved Heterogeneity.
Econometrica, forthcoming.

Card, D., Henning, J., Kline, P., 2013. Workplace heterogeneity and the rise of West
German wage inequality. Q. J. Econ. 128 (3), 967–1015.

Card, D., Cardoso, A., Heining, J., Kline, P., 2018. Firms and labor market inequality:
evidence and some theory. J. Labor Econ. 36 (51), S13–S70.

Carlsen, F., Rattsø, J., Stokke, H., 2016. Education, experience, and urban wage premium.
Reg. Sci. Urban Econ. 60, 39–49.

Combes, P.P., Gobillon, L., 2015. The empirics of agglomeration economies. In:
Duranton, G., Henderson, V., Strange, W. (Eds.), Handbook of Urban and Regional
Economics, vol. V. Elsevier, North-Holland, pp. 247–348.

http://refhub.elsevier.com/S0166-0462(22)00046-1/sref1
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref1
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref1
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref2
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref2
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref3
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref3
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref3
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref3
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref4
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref4
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref5
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref5
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref5
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref6
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref6
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref6
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref7
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref7
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref7
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref7
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref8
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref8
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref8
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref9
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref9
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref9
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref10
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref10
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref11
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref11
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref11
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref12
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref12
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref13
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref13
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref13
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref14
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref14
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref14
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref15
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref15
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref16
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref16
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref16
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref17
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref17
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref17
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref18
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref18
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref18
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref19
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref19
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref19
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref19


S. Leknes et al. Regional Science and Urban Economics 96 (2022) 103806
Combes, P.P., Duranton, G., Gobillon, L., 2008. Spatial wage disparities: sorting matters.
J. Urban Econ. 63, 723–742.

Combes, P.P., Duranton, G., Gobillon, L., Roux, S., 2010. Estimating agglomeration
economies with history, geology, and worker effects. In: Glaeser, E. (Ed.),
Agglomeration Economics. The University of Chicago Press, pp. 15–66.

Dauth, W., Findeisen, S., Moretti, E., Suedekum, J., 2022. Matching in Cities. Journal of
the European Economic Association, forthcoming.

De la Roca, J., Puga, D., 2017. Learning by working in big cities. Rev. Econ. Stud. 84,
106–142.

Duranton, G., Jayet, H., 2011. Is the division of labour limited by the extent of the
market? Evidence from French cities. J. Urban Econ. 69 (1), 56–71.

Eeckhout, J., Kircher, P., 2011. Identifying sorting – in theory. Rev. Econ. Stud. 78,
872–906.

Figueiredo, O., Guimaraes, P., Woolward, D., 2014. Firm-worker matching in industrial
clusters. J. Econ. Geogr. 14, 1–19.

Fredriksson, P., Hensvik, L., Nordstr€om Skans, O., 2018. Mismatch of talent: evidence on
match quality, entry wages, and job mobility. Am. Econ. Rev. 108 (11), 3303–3338.

Giannone, E., 2019. Skill-biased Technical Change and Regional Convergence. University
of Chicago working paper.

Hirsch, B., K€onig, M., M€oller, J., 2013. Is there a gap in the gap? Regional differences in
the gender pay gap. Scot. J. Polit. Econ. 60 (4), 412–439.

Hoen, M., 2016. Occupational Crosswalk, Data and Language Requirements. Ragnar
Frisch Centre for Economic Research. Working Paper 1/2016.

Kline, P., Saggio, R., Sølvsten, M., 2020. Leave-out estimation of variance components.
Econometrica 88, 1859–1898.
18
Leknes, S., 2015. The more the merrier? Evidence on quality of life and population size
using historical mines. Reg. Sci. Urban Econ. 54, 1–17.

Lise, J., Robin, J., 2017. The macrodynamics of sorting between workers and firms. Am.
Econ. Rev. 107 (4), 1104–1135.

Lopes de Melo, R., 2018. Firm wage differentials and labor market sorting: reconciling
theory and evidence. J. Polit. Econ. 126 (1), 313–346.

Macis, M., Schivardi, F., 2016. Exports and wages: rent sharing, workforce composition,
or returns to skills? J. Labor Econ. 34 (4), 945–978.

Melo, P., Graham, D., 2014. Testing for labour pooling as a source of agglomeration
economies: evidence for labour markets in England and Wales. Pap. Reg. Sci. 93 (1),
31–52.

Mendes, R., van den Berg, G., Lindeboom, M., 2010. An empirical assessment of
assortative matching in the labor market. Lab. Econ. 17, 919–929.

Moen, K., 1978. Kongsberg Sølvverk 1623-1957. Kongsberg: Sølvverksmuseets Venner.
Øisang, O., 1942. Rørosboka: Vol. 2. Røros Kobberverks Historie, Trondheim. Nidaros

boktrykkeri AS.
Phimister, E., 2005. Urban effects on participation and wages: are there gender

differences? J. Urban Econ. 58 (3), 513–536.
Rosenthal, S., Strange, W., 2008. The attenuation of human capital spillovers. J. Urban

Econ. 64 (2), 373–389.
Steen, S., 1986. Bals gruve: landsdelens eldste gruve. Ottar 3, 12–16.
Thuesen, G., 1979. Den Første Dokumenterte Bergverksdrift I Norge, Volund. Norsk

Teknisk Museum, pp. 7–60.
Yankow, J., 2009. Some empirical evidence of the efficacy of job matching in urban labor

markets. Int. Adv. Econ. Res. 3 (2), 233–244.

http://refhub.elsevier.com/S0166-0462(22)00046-1/sref20
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref20
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref20
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref21
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref21
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref21
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref21
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref22
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref22
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref23
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref23
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref23
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref24
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref24
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref24
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref25
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref25
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref25
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref25
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref26
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref26
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref26
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref27
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref27
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref27
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref27
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref28
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref28
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref29
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref29
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref29
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref29
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref29
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref30
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref30
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref31
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref31
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref31
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref32
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref32
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref32
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref33
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref33
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref33
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref34
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref34
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref34
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref35
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref35
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref35
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref36
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref36
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref36
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref36
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref37
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref37
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref37
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref38
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref39
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref39
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref40
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref40
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref40
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref41
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref41
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref41
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref42
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref42
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref43
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref43
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref43
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref44
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref44
http://refhub.elsevier.com/S0166-0462(22)00046-1/sref44

	Assortative labor matching, city size, and the education level of workers
	1. Introduction
	2. Estimating assortative matching separating between education groups
	3. Econometric challenges: limited mobility bias and endogenous population size
	4. Assortative matching, skills, and tasks
	5. The importance of assortative matching for urban wage premium: decomposition
	6. Robustness: limited mobility bias
	7. Assortative matching heterogeneity: gender and age
	8. Concluding remarks
	Author statement
	Declaration of competing interest
	Appendix C. Supplementary data
	Appendix A. Additional details on the dataset
	Appendix B. Additional tables and figures
	References


