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Abstract

We propose a family of lagged random walk sampling methods in simple undirected
graphs, where transition to the next state (i.e. node) depends on both the current and previ-
ous states—hence, lagged. The existing random walk sampling methods can be incorporated
as special cases. We develop a novel approach to estimation based on lagged random walks
at equilibrium, where the target parameter can be any function of values associated with
finite-order subgraphs, such as edge, triangle, 4-cycle and others.

Key words: random jump, stationary distribution, non-Markovian process, generalised ratio
estimator, capture-recapture estimator

1 Introduction

Let G = (U,A) be a simple undirected graph, with known node set U and order N = |U |, but
unknown edge set A or size R = |A|. Discrete-time random walk (RW) in G can only move
from the current state Xt = i to the next Xt+1 = j if (ij) ∈ A, where i, j ∈ U , such that
the walk is confined within the component of G where the initial state X0 is located, given
any X0 ∈ U . For a targeted random walk (TRW, Thompson, 2006), the transition probabilities
Pr(Xt+1 = j|Xt = i) at each time step t can be subject to other devices, such as random
jumps or an acceptance-rejection mechanism for the proposed moves. The TRW stationary
distribution has many applications to large often dynamic networks, such as PageRank (Brin
and Page, 1998); see Masuda et al. (2017) and Newman (2010) for reviews.
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Figure 1: Lagged random walk on a subway line, (Xt−1, Xt) = (2, 3)

We call a random walk lagged if the transition probabilities at time step t are instead given
by Pr(Xt+1 = j|Xt = h,Xt−1 = i). The process {Xt : t ≥ 0} is non-Markovian when the states
are generated by a lagged random walk (LRW). Figure 1 provides a simple setting of LRW on
a subway line of 5 stations. Fixing p = 0.5 for Xt ∈ {2, 3, 4} yields pure RW, whereas normal
subway service corresponds to

p = Pr(Xt+1 = i | Xt = h,Xt−1 = i) = 0

for any h ∈ {2, 3, 4}. The LRW has a tendency to persist in the same travel direction if p < 0.5,
to backtrack to the previous station if 0.5 < p < 1, or stucks between two stations if p = 1.

Generally, by an extra parameter that controls the tendency for backtracking in arbitrary
graphs, LRW yields a family of sampling methods which includes TRW as a special case.
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Let G(M) be a subgraph induced by M , with node set M , M ⊂ U , and edge set A ∩ {(ij) :
i, j ∈M}. The specific characteristics of G(M) is called motif (Zhang and Patone, 2017; Zhang,
2021), denoted by [M ], and the order of [M ] is |M |, i.e. that of G(M). Figure 2 illustrates some
low-order motifs. For instance, edge is a 2nd-order motif which can be given by [{i, j} : aij = 1],
where aij = 1 if (ij) ∈ A and 0 otherwise, for i, j ∈ U ; any particular edge in A is an occurrence of
the edge motif in G. Or, triangle is a 3rd-order motif given by [{i, j, k} : aijajkaki = 1], where
i, j, k ∈ U ; any particular triangle in G is an occurrence of the triangle motif.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Figure 2: From left to right, motif node, edge, 2-star, triangle, 4-cycle and 3-path

Let Ω contain all the occurrences of the motifs of interest in G. For each κ ∈ Ω, let yκ be a
fixed value associated with κ. The corresponding graph total, denoted by θ, is given by

θ =
∑
κ∈Ω

yκ (1)

whereas we refer to any function of {yκ : κ ∈ Ω} as a graph parameter, denoted by µ.
For instance, let Ω = U , and let yκ = 1 or 0 be a binary indicator of the type of node κ, then

θ by (1) is the total number of type-1 nodes in G, and µ = θ/N is a 1st-order graph parameter
measuring their prevalence. Let Ω = A and yκ = 1 for any κ ∈ A, then θ = R is the size of G.
Let Ω contain all the triangles and 2-stars in G, and let θ be the graph total of triangles and θ′

that of 2-stars, then µ = θ/(θ + θ′) is a measure of the transitivity of G.
Previously, Thompson (2006) and Avrachenkov et al. (2010) have considered the estimation

of 1st-order graph parameters based on TRW sampling, and Avrachenkov et al. (2016) that of
the 2nd-order graph totals. Cooper et al. (2016) propose an approach using the times of the first
returns to high-degree nodes. Below, in Section 2, we propose a general family of LRW sampling
methods. We develop in Section 3 an approach to estimating finite-order graph parameters and
totals as defined above. Numerical illustrations are given in Section 4, and some remarks on
future research in Section 5.

2 LRW sampling

Let di be the degree of node i in U . Let r > 0 and 0 ≤ w ≤ 1 be two chosen constants regulating
random jump and backtracking, respectively. Let the transition probability of LRW be

Pr(Xt = j | Xt = h,Xt−1 = i)

=

{
r

dh+r

(
1
N

)
+

ahj
dh+r if dh = 1

r
dh+r

(
1
N

)
+ I(j = i)

wahj
dh+r + I(j 6= i)dh−waihdh+r

ahj
dh−aih if dh > 1

(2)

That is, the walk either jumps randomly to any node j in U–including the current Xt–with
probability r/(dh+ r), or it moves to an adjacent node j with probability dh/(dh+ r). If dh = 1,
then there is only one adjacent j; if dh > 1, then it either backtracks to the previous Xt−1 = i
with probability w/(dh + r), or it moves randomly to one of the other adjacent nodes.

2.1 Stationary distribution

TRW of Avrachenkov et al. (2010) is the special case of LRW by (2) given w = 1, where the
previous state Xt−1 (if adjacent) is treated as any other adjacent nodes at step t and {Xt : t ≥ 0}
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form a Markov chain. The stationary probability is given by

πh := Pr(Xt = h) =
dh + r

2R+ rN
(3)

The process {Xt : t ≥ 0} is non-Markovian if w < 1. However, let xt = (Xt−1, Xt) for t ≥ 1.
Given any initial x1 = (X0, X1), LRW (2) generates a Markov chain {xt : t ≥ 1}, since

Pr(xt+1|xt, ...,x1) = Pr(xt+1|xt) = Pr(Xt+1|xt)

Due to random jumps, this Markov chain is irreducible, such that there exists a unique stationary
distribution, denoted by

πx := Pr(xt = x) and
∑
x

πx = 1

A unique stationary distribution of Xt follows, which satisfies the mixed equation

πh =
∑
i∈U

Pr
(
xt = (i, h)

)
=

∑
x=(i,h)
i∈νh

πx +
∑
i 6∈νh

πi
di + r

( r
N

)
(4)

where νh = {i ∈ U : aih = 1} is the neighbourhood of adjacent nodes (to h), and the transition
to h from any node outside νh can only be accomplished by a random jump.

Lemma 1. For LRW by (2) with any 0 ≤ w ≤ 1 in undirected simple graphs, the stationary
probability πh is given by (3) for any h ∈ U , and πx for any x = (i, h) is given by

πx ∝

{
1 + r/N if i ∈ νh
r/N if i 6∈ νh

Proof. Under LRW (2), balanced flows between xt = (i, h) and xt+1 = (h, j) are the same
as balanced flows over (Xt−1, Xt, Xt+1) in the corresponding directions. To show the values
{ph = dh + r : h ∈ U} satisfy the balanced flows through (Xt−1, Xt, Xt+1) at equilibrium, one
needs to consider three situations.

I. (i = j) h i h j

I. {i, j} ∈ νh, as illustrated. If i = j, then (i, h, j) and (j, h, i) are backtracking in either
direction, the probability of which is the same by (2), so that they are always balanced. If i 6= j,
then neither (i, h, j) nor (j, h, i) is backtracking, with the same transition probability but πxt
differ to πxt+1 generally. However, x = (i, h) for any given i ∈ νh is involved in one flow in either
direction, such that altogether these flows are balanced.

II. i h j

II. {i, j} 6∈ νh, as illustrated, including i = h or j = h, in which case (i, h, j) and (j, h, i) can
only take place by random jumps, which are balanced given ph = dh + r, ∀h ∈ U , since

pi
r

di + r

( 1

N

) r

dh + r

( 1

N

)
= pj

r

dj + r

( 1

N

) r

dh + r

( 1

N

)
III. i h j i (h = j)

III. One of (i, j), say, i belongs to νh but not the other, including when j = h, as illustrated.
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Setting pi = di + r for πi in the second term on the right-hand side of (4), we have

(
πh −

∑
x=(i,h)
i∈νh

πx
)( dh
dh + r

+
r

dh + r

dh
N

)
= r

N − dh
N

( dh
dh + r

+
r

dh + r

dh
N

)

i.e. summing over all possible flows (j, h, i) where j 6∈ νh and i ∈ νh. Whereas, summing over
all the possible flows (i, h, j) in the other direction, we have

( ∑
x=(i,h)
i∈νh

πx
) r

dh + r

(N − dh
N

)

Balancing (i.e. equating) the two groups of flows at equilibrium yields∑
x=(i,h)
i∈νh

πx = dh + r
dh
N

Replacing this into the right-hand side of (4), we obtain ph = dh + r. Summarising all the three
situations, the values ph satisfy the balanced flows, so that πh ∝ dh + r as in (3). Finally, πx for
any x = (i, h) follows from (4) by symmetry.

2.2 Sample graph by LRW

LRW can be used to select subgraphs of G following the definition of sample graph given by
Zhang (2021). By the observation procedure (OP) of LRW, we observe all the edges incident to
Xt = i at step t, i.e. the entire row and column of the adjacency matrix of G corresponding
to node i. Let s = {X0, ..., XT } be the seed sample of LRW, which are defined as the nodes to
which the OP is applied. For any given s, the observed part of the adjacency matrix can be
specified as s× U ∪ U × s, such that the sampled (or observed) edges are given by

As = A ∩
(
s× U ∪ U × s

)
The sample graph by LRW, denoted by Gs, is given by

Gs = (Us, As) where Us = s ∪ Inc(As) (5)

i.e. the node sample is the union of s and all the nodes incident to the edges in As.

◦ 3 4 ◦

· · · 0 1 2 ? 5 · · ·

◦ � ◦
Figure 3: Illustration of sample observation by LRW

Figure 3 illustrates how one can observe various finite-order motifs by LRW sampling. Let
Xt+q = q for q = 0, 1, ..., 5. In addition to the nodes {Xt, ..., Xt+5} we observe many other
motifs, such as edge [{0, 1}] at Xt = 0 and again at Xt+1 = 1, triangle [{1, 2, 3}] and [{1, 2, �}]
given (Xt+1, Xt+2) = (1, 2) and [{1, 2, 3}] again given (Xt+2, Xt+3) = (2, 3), 4-cycle [{2, 3, 4, ?}]
given (Xt+2, Xt+3, Xt+4) = (2, 3, 4). All these motifs are observed in the sample graph Gs by
LRW. Denote by Ωs the elements of Ω in (1) which are observed in Gs.
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3 Estimation

We consider first the estimation of R, i.e. the size of G, hence the stationary probability (3) by
LRW sampling. Next, we consider other finite-order graph parameters and totals. In applications
one can use the mean of a given estimator from any number, say, K independent LRWs as the
final estimator, and use the empirical variance of the K estimators for variance estimation.

3.1 Size of graph

Let {Xt1 , ..., Xtnx} be an extraction of nx states from LRW {Xt : t ≥ 0} at equilibrium, where
t1, ..., tnx do not need to be consecutive. Similarly, let {Yτ1 , ..., Yτny } be those of a separate
independent LRW {Yτ : τ ≥ 0}. We have

E(m) := E
( nx∑
i=1

ny∑
j=1

1

dh + r
I(Yτj = h | Xti = h)

)
=

nxny
2R+ rN

where m can be referred to as the number of collisions by {Xt} and {Yτ}. This yields

R̂1 = (nxny/m− rN)/2 (6)

as a capture-recapture (CR) estimator. Meanwhile, since

E(d̄w) := E


∑nx

i=1

dXti
dXti

+r +
∑ny

j=1

dYτj
dYτj

+r∑nx
i=1

1
dXti

+r +
∑ny

j=1
1

dYτj
+r

 ≈ 2R

N

we obtain another generalised ratio (GR) estimator of R as

R̂2 = Nd̄w/2 (7)

Finally, combining the two, we obtain a GR-CR estimator, denoted by R̂3, by incorporating an
estimator N̂ although N is known, i.e.{

2mR̂3 + rmN̂ = nxny

−2R̂3 + d̄wN̂ = 0
⇒ N̂ =

nxny

m(r + d̄w)
and R̂3 =

nxnyd̄w

2m(r + d̄w)
(8)

3.2 Finite-order graph parameters and totals

Below we first clarify generally the basis of estimation under LRW sampling, before we define
the estimators of finite-order graph parameters and totals.

3.2.1 Basis of estimation

Let M = {Xt+1, ..., Xt+q} be a set of successive states by LRW. At equilibrium, we have

πM = Pr(Xt+1, ..., Xt+q) = πXt+1

q−1∏
i=1

pXt+iXt+i+1 (9)

where pXt+iXt+i+1 is the transition probability fromXt+i toXt+i+1, which is known regardless the
unvisited nodes of G. We shall refer to πM by (9) as the stationary successive sampling probability
(S3P), where the probability πXt+1 is known exactly up to the proportionality constant 2R+rN ,

or it can be estimated via R̂ in which case we write π̂Xt+1 and π̂M .

5



Apart from the actual sequences in a LRW, the S3P (9) is also available for any hypothetical
sequence M , given M ⊆ s, because the part of the transition probability matrix corresponding
to s× s is already observed. For instance, given the actual sequence (Xt, Xt+1, Xt+2) = (1, 2, 3)
in Figure 3, we can as well calculate π3p32p21 of a sampling sequence (Xt, Xt+1, Xt+2) = (3, 2, 1)
hypothetically. Given the seed sample s, all the sequences for which the S3P is available belong
to the generating (sequences of) states of LRW sampling given by

Cs = {M : M ⊆ s}

The subset containing the parts of the actual walk is given by

Cw =
{
{Xt, ..., Xt+q} : 0 ≤ t ≤ t+ q ≤ T

}
For example, suppose LRW with X0 = 1 and XT = 4 in Figure 3, for which we have

Cw =
{
{1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {2}, {2, 3}, {2, 3, 4}, {3}, {3, 4}, {4}

}
Let the sample motif κ, κ ∈ Ωs, be observed from the actual sampling sequence of states

(AS3) sκ = (Xt, ..., Xt+q), for some time step t and q = |sκ|−1. An equivalent sampling sequence
of states (ES3), denoted by s̃κ ∼ sκ including sκ ∼ sκ, is any possible sequence of states of the
same length |s̃κ| = |sκ|, such that the motif κ would be observed if (Xt, Xt+1, ..., Xt+q) = s̃κ but
not based on any subsequence of s̃κ. In other words, a motif κ observed from AS3 sκ can be
sampled otherwise sequence-by-sequence, in which respect its ES3 set

Fκ = {s̃κ : s̃κ ∼ sκ}

constitute the multiplicity of access to κ under LRW sampling, similarly to the concept of
multiplicity under indirect sampling (Birnbaum and Sirken, 1965).

Take the triangle κ with M = {1, 2, 3} in Figure 3, where sκ = (Xt, Xt+1) = (1, 2) is an
AS3, for which we have Fκ = {(1, 2), (2,1), (1,3), (3,1), (2,3), (3,2)}, since the same κ would be
observed if (Xt, Xt+1) is any of these 6 sequences in Fκ.

3.2.2 Estimators

Given LRW sampling from G, choose a seed sample of successive states at equilibrium which is of
size n, denoted by s = {X1, ..., Xn}. Obtain the corresponding motif sample Ωs, the generating
states Cs and its subset Cw.

For any κ ∈ Ωs observed from AS3 sκ = (Xt, ..., Xt+q), where sκ ∈ Cw, let Fκ be its ES3 set.
Let M be a possible sequence of states (Xt, ..., Xt+q). Let the sampling indicator δM = 1 if M
is realised and 0 otherwise, with the associated S3P πM , over hypothetically repeated sampling.
Let the observation indicator Iκ(M) = 1 if M ∈ Fκ and 0 otherwise. Let wMκ be the incidence
weight for any M ∈ Fκ, where wMκ = 0 if M 6∈ Fκ, such that for any κ ∈ Ω, we have∑

M∈Fκ

wMκ =
∑
M

Iκ(M)wMκ = 1

An estimator of the graph total (1) is given by

θ̂(Xt, ..., Xt+q) =
∑
κ∈Ω

∑
M

δM
πM

Iκ(M)wMκyκ (10)
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which is unbiased for θ, since

E
(
θ̂(Xt, ..., Xt+q)

)
=
∑
κ∈Ω

yκ
∑
M

Iκ(M)wMκ =
∑
κ∈Ω

yκ

Although there are infinitely many possibilities in principle, the two basic choices of wMκ

are the multiplicity weight given by
wMκ = 1/|Fκ| (11)

for any M in Fκ, and the proportional-to-probability weight (PPW) given by

wMκ = πM/π(κ) and π(κ) =
∑
M∈Fκ

πM (12)

Notice that the PPW (12) is only possible if Fκ ⊆ Cs.
Given the AS3 sκ is of the order |sκ| = q + 1 and |s| = n, there are at most n − q possible

estimators based on (Xt, ..., Xt+q) by (10), denoted by θ̂t for t = 1, ..., n− q. Let It = 1 indicate
that (Xt, ..., Xt+q) can lead to the observation of at least one motif in Ω, and It = 0 otherwise.

An estimator of θ combining all the θ̂t is given by

θ̂ =
( n−q∑
t=1

Itθ̂t
)
/
( n−q∑
t=1

It
)
. (13)

Generally, the estimators (10) and (13) can only be calculating using π̂M instead of πM ,
which requires an estimate of R. However, it is also possible to use πM directly to estimate
graph parameters regardless the proportionality constant 2R+ rN . For instance, let µ = θ/NΩ,
where NΩ = |Ω|. A generalised ratio estimator is given by

µ̂ = θ̂/N̂Ω

where N̂Ω is also given by (10) and (13) but with yκ ≡ 1. In the special case of Ω = U , this
reduces to the GR estimator of population mean

∑
i∈U yi/N (Thompson, 2006), as a 1st-order

graph parameter. Generally one can estimate any µ that is a function of graph totals, as long
as the plug-in µ̂ is invariant when each total involved is replaced by its estimator (13).

4 Illustration

Below we explore the convergence rate of LRW and illustrate some associated estimators of 1st,
2nd and 3rd-order graph totals and parameters.

Let G = (U,A) be simple and undirected with N = |U | = 100. Let y = 1 be the value
associated with the first 20 nodes i = 1, ..., 20, to be referred to as the cases, and let y = 0
be the value for the rest 80 nodes or the noncases. The edges (ij) are generated randomly,
with different probabilities according to yi + yj = 2, 1 or 0. The resulting graph has 299 edges,
R = |A| = 299; the cases have an average degree 13.5, and the noncases have an average degree
4.1. This valued graph G with a mild core-periphery structure is fixed for the illustrations below.

4.1 Convergence to equilibrium

Let pt,i = Pr(Xt = i), for i ∈ U . We have pt,i → πi ∝ di + r by LRW, as t → ∞. How quickly
a walk reaches equilibrium is affected by the selection of the initial state X0. In the extreme
case the walk is at equilibrium from the beginning if Pr(X0 = i) = πi for i ∈ U . To explore
the speed of convergence, consider two other choices p0,i = Pr(X0 = i) ≡ 1/N or p0,1 = 1.
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To track the convergence empirically, we use B independent simulations of LRW to estimate
E(Yt) =

∑
i∈U pt,iyi, which is targeted at the equilibrium expectation E(Y∞) =

∑
i∈U πiyi.

Table 1: E(Yt) by t, r and initial X0, 105 simulations of LRW with w = 1

r = 1, E(Y∞) = 0.415 r = 0.1, E(Y∞) = 0.447
Initiation t = 1 t = 4 t = 8 t = 16 t = 1 t = 4 t = 8 t = 16

p0,i = πi 0.420 0.419 0.421 0.414 0.449 0.451 0.450 0.448
p0,i = 1/N 0.341 0.394 0.408 0.413 0.355 0.412 0.433 0.449
p0,1 = 1 0.714 0.481 0.433 0.413 0.741 0.529 0.471 0.448

Table 1 shows the results for t = 1, 4, 8, 16 and r = 1, 0.1, each based on 105 simulations
of LRW with w = 1. The equilibrium expectation E(Y∞) varies with r. Of the two choices
here, the value r = 1 yields the degree+1 walk, whereas the value r = 0.1 tunes the walk closer
to pure RW. It can be seen that the walk stays at equilibrium if p0,i = πi. Under the current
set-up, convergence to equilibrium can apparently be expected at t = 16, whether the initial
X0 is selected completely randomly from U given p0,i = 1/N , or fixed at i = 1 given p0,1 = 1.
Neither does the speed of convergence vary much for the values of r here.

4.2 Estimation of case prevalence

Consider the 1st-order parameter µ =
∑

i∈U yi/N . Let s = {X0, ..., XT }, where X0 is simply
drawn with πi now that convergence to equilibrium is quick and what matters for the estimation
is mainly the size of the seed sample size itself. Let ψ be the traverse of the walk, given as
the ratio between the number of distinct nodes visited by the walk and N , which indicates how
extensively the walk has travelled through G.

Given (T, r, w), generate LRW independently B times, each resulting in a replicate of µ̂, the
mean of which is an estimate of E(µ̂) by LRW sampling at equilibrium, denoted by Mean(µ̂),
and the square root of their empirical variance–SD(µ̂)–is an estimate of the standard error of µ̂.

Table 2: Estimation of case prevalence µ = 0.2, 103 simulations

r = 0.1 r = 6
T = 50 Mean(µ̂) SD(µ̂) Mean(ψ) Mean(µ̂) SD(µ̂) Mean(ψ)

w = 1 0.211 0.093 0.321 0.203 0.070 0.383

w = 0.01 0.210 0.079 0.367 0.203 0.067 0.395

r = 0.1 r = 6
T = 100 Mean(µ̂) SD(µ̂) Mean(ψ) Mean(µ̂) SD(µ̂) Mean(ψ)

w = 1 0.204 0.066 0.499 0.200 0.049 0.607

w = 0.01 0.203 0.054 0.559 0.201 0.048 0.617

Table 2 gives the results for T = 50 or 100, r = 6 or 0.1, and w = 1 or 0.01, each based on 103

simulations. Since the case nodes have larger degrees than the noncase nodes in G, the stationary
probability πi depends on yi and LRW sampling is informative in this sense. Nevertheless, this
is not an issue for design-based estimation of graph parameters, and the consistency of µ̂ is
already evident at T = 50.

Mean(ψ) shows that in the current setting a TRW (i.e. w = 1) of length T = 50 is expected
to visit only about a third of all the nodes in G, and one of length T = 100 can reach about
half of the nodes. How quickly TRW traverses the graph depends on the chance of visiting
isolated nodes by random jumps as well as the chance of backtracking to the previous adjacent
node, the probabilities of both are reduced given small r and w. By reducing the chance of
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backtracking, LRW with w = 0.01 can speed up the traverse. However, increasing the chance of
random jumps, e.g. r = 6 instead of r = 0.1, can speed up the traverse even more. Note that
since the average degree 2R/N is about 6 in G here, setting r = 6 in (2) makes a random jump
on average at least as probable as an adjacent move at each time step.

Given that we are estimating a 1st-order parameter here, every distinct node encountered
contributes more effectively to the estimation than revisiting a node. As can be seen from SD(µ̂),
increasing r from 0.1 to 6 is more beneficial to the sampling efficiency than reducing w from 1
to 0.01. Nevertheless, reducing w can greatly reduce the sampling variance of TRW at r = 0.1,
e.g. by about 1/3 given T = 100 as highlighted (italic) in Table 2.

4.3 Estimation of graph size

Consider the three estimators (6), (7) and (8) of the 2nd-order graph total R. We use simply
nx = ny = n for each pair of independent {Xt} and {Yt}. Table 3 gives the results for n = 50 or
100, r = 6 or 0.1, and w = 1 or 0.01, each based on 104 simulations, where an estimate of the
expectation of each R̂ is given together with its simulation error in the parentheses.

Table 3: Estimation of graph size R = 299 (SD in parentheses), 104 simulations

r = 0.1 r = 6

n = 50 R̂1 R̂2 R̂3 R̂1 R̂2 R̂3

w = 1 344 (1.64) 306 (0.41) 344 (1.61 ) 333 (1.61) 300 (0.26) 316 (0.81)

w = 0.01 319 (0.93) 304 (0.36) 319 (0.91 ) 329 (1.43) 300 (0.26) 314 (0.72)

r = 0.1 r = 6

n = 100 R̂1 R̂2 R̂3 R̂1 R̂2 R̂3

w = 1 311 (0.61) 303 (0.31) 311 (0.60) 307 (0.70) 299 (0.19) 303 (0.36)

w = 0.01 305 (0.42) 302 (0.27) 305 (0.41) 306 (0.65) 299 (0.18) 302 (0.33)

The traverse for given (T, r, w) is already reported earlier. At n = 50, the average number
of collisions between {Xt} and {Yt} is about 4 given r = 0.1, which is about halved given r = 6;
at n = 100, it is about 16 given r = 0.1, and about halved given r = 6. Reducing w = 1 to 0.01
improves the CR estimator R̂1 more than increasing r = 0.1 to 6. The improvement is about
the same with either device for the GR-CR estimator R̂3. The GR estimator is the best of the
three here, because the number of collisions is still quite low whether n = 50 or 100.

Regardless the estimator, LRW sampling with w = 0.01 is more efficient than TRW sampling
(i.e. w = 1). The gain is largest for the two CR-related estimators, which is most useful when
the TRW sampling variance is largest, e.g. as highlighted in Table 3.

4.4 Estimation of a 3rd-order graph total and a related parameter

Let θ be the total number of triangles in G, and θ1 that of the case triangles, i.e.
∏
i∈M yi = 1 if

[M ] is triangle. The 3rd-order graph parameter µ = θ1/θ is a measure of the transitivity among
cases compared to the overall transitivity in G. We have (θ, θ1, µ) = (170, 140, 0.824) here.

Let Ω contain all the triangles in G. Given (Xt, Xt+1) = (i, j) of two adjacent nodes under
LRW, one observes all the triangles involving i and j. For instance, both the triangles of {1, 2, 3}
and {1, 2, �} in Figure 3 are observed from (Xt, Xt+1) = (1, 2), such that for (10) we have δM = 1
if M = (1, 2) and Iκ(M) = 1 if κ is either of these two triangles.

Whereas µ can be estimated using πM directly, π̂M = πM (R̂) is needed for θ or θ1. Given
any (Xt, Xt+1) = (i, j) as the AS3 of a triangle κ, the ES3s are the six possible adjacent moves
along the triangle. The incidence weight is the same, i.e. wMκ ≡ 1/6, either by (11) or (12),
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because the S3P (9) of LRW (2) is a constant of M = (i, j), i.e.

πM = πipij ∝ 1 + r/N

Table 4: Estimation of µ = θ1/θ = 0.824 (B = 103) and θ = 170 (B = 104)

r = 0.1 r = 6

T = 50 Mean(µ̂) SD(µ̂) θ̂ Mean(µ̂) SD(µ̂) θ̂

w = 1 0.796 0.108 185 (0.91) 0.796 0.125 174 (0.84)

w = 0.01 0.797 0.101 180 (0.78) 0.799 0.124 175 (0.82)

r = 0.1 r = 6

T = 100 Mean(µ̂) SD(µ̂) θ̂ Mean(µ̂) SD(µ̂) θ̂

w = 1 0.825 0.082 177 (0.63) 0.815 0.101 172 (0.59)

w = 0.01 0.826 0.073 175 (0.55) 0.811 0.096 173 (0.58)

Table 4 gives the results for T = 50 or 100, r = 6 or 0.1, and w = 1 or 0.01. The number of
simulations is B = 103 for µ and B = 104 for θ. For θ̂ an estimate of Mean(θ̂) is given together
with its simulation error in the parentheses. The speed of convergence is noticeably quicker for
θ̂ with r = 6 instead of 0.1, but does not differ much for µ̂. On the one hand, intuitively a large
chance of random jump is unlikely to be efficient as the order of motif increases; on the other
hand, the total estimator θ̂ uses πM (R̂) instead of πM , and its convergence rate seems to have
benefitted from the correlation with R̂. Again, the extra flexibility of LRW can be useful in
certain situations, e.g. as highlighted in Table 4.

5 Some remarks on future research

Theoretical results on the convergence rate only seem to be available for pure random walks
in connected graphs; see e.g Boyd et al. (2004), Ben-Hamou et al. (2019a). An extreme case
of lagged random work, referred to as non-backtracking random walk, has been shown to mix
faster in regular graphs (Alon et al., 2007) and certain irregular graphs (Ben-Hamou et al.,
2019; Palahan, 2015). The empirical results of LRW sampling here suggest that longer walks
are needed for estimating totals using π̂M than estimating parameters using πM directly, but
general theoretical results are lacking at the moment.

What is a good choice of w can conceivably vary for different motifs. Using a small w with
nearly no backtracking if possible seems to be reasonable in all the illustrations considered here,
especially when the walk has a relatively low probability for random jumps. More systematic
investigation is needed in this respect.

The choice of incidence weights wMκ over Fκ is nontrivial generally, although the two basic
choices (11) or (12) happen to coincide for the triangle motif. For instance, let M = {i, j, g, h}
form a 4-cycle, which can be observed based on AS3 consisting of two successive adjacent moves,
say, (Xt, Xt+1, Xt+2) = (i, j, g). The corresponding S3P (9) is πipijpjg = 1

dj+r

(
1 + r

N

)2
, such

that the PPW (12) would differ to the multiplicity weight (11). Since the PPW requires Fκ ⊆ Cs
but not the equal weights, the latter can be applied to a larger number of sample motifs. In
practice one can calculate several estimators using different incidence weights and choose among
them depending on the given situation.

At any moment the traverse of a walk is either known given N or can be estimated together
with R̂3. A prediction form of (13) would be helpful, which takes into account the fact that
uncertainty only arises due to the part of graph that is yet unobserved.
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