Show simple item record

dc.contributor.authorvon Brasch, Thomas
dc.contributor.authorRaknerud, Arvid
dc.contributor.authorVigtel, Trond C.
dc.date.accessioned2024-10-29T08:48:51Z
dc.date.available2024-10-29T08:48:51Z
dc.date.issued2024-10
dc.identifier.issn1892-753X
dc.identifier.urihttps://hdl.handle.net/11250/3161219
dc.description.abstractThis paper introduces a panel GMM framework for identifying and estimating demand elasticities via heteroscedasticity. While existing panel estimators address the simultaneity problem, the state-of the-art Feenstra/Soderbery (F/S) estimator suffers from inconsistency, inefficiency, and lacks a valid framework for inference. We develop a constrained GMM (C-GMM) estimator that is consistent and derive a uniform formula of its asymptotic standard error that is valid even at the boundary of the parameter space. A Monte Carlo study demonstrates the consistency of the C-GMM estimator and shows that it substantially reduces bias and root mean squared error compared to the F/S estimator. Unlike the F/S estimator, the C-GMM estimator maintains high coverage of confidence intervals across a wide range of sample sizes and parameter values, enabling more reliable inference.en_US
dc.language.isoengen_US
dc.publisherStatistisk sentralbyråen_US
dc.relation.ispartofseriesDiscussion Papers;1015
dc.rightsNavngivelse-Ikkekommersiell-DelPåSammeVilkår 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/deed.no*
dc.subjectDemand Elasticityen_US
dc.subjectPanel Dataen_US
dc.subjectHeteroscedasticityen_US
dc.subjectConstrained Estimationen_US
dc.subjectBaggingen_US
dc.subjectGMMen_US
dc.titleIdentifying Demand Elasticity via Heteroscedasticity: A Panel GMM Approach to Estimation and Inferenceen_US
dc.typeWorking paperen_US
dc.rights.holder© Statistisk sentralbyråen_US
dc.source.pagenumber47en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse-Ikkekommersiell-DelPåSammeVilkår 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse-Ikkekommersiell-DelPåSammeVilkår 4.0 Internasjonal