dc.contributor.author | von Brasch, Thomas | |
dc.contributor.author | Raknerud, Arvid | |
dc.contributor.author | Vigtel, Trond C. | |
dc.date.accessioned | 2024-10-29T08:48:51Z | |
dc.date.available | 2024-10-29T08:48:51Z | |
dc.date.issued | 2024-10 | |
dc.identifier.issn | 1892-753X | |
dc.identifier.uri | https://hdl.handle.net/11250/3161219 | |
dc.description.abstract | This paper introduces a panel GMM framework for identifying and estimating demand elasticities via
heteroscedasticity. While existing panel estimators address the simultaneity problem, the state-of the-art Feenstra/Soderbery (F/S) estimator suffers from inconsistency, inefficiency, and lacks a valid
framework for inference. We develop a constrained GMM (C-GMM) estimator that is consistent and
derive a uniform formula of its asymptotic standard error that is valid even at the boundary of the
parameter space. A Monte Carlo study demonstrates the consistency of the C-GMM estimator and
shows that it substantially reduces bias and root mean squared error compared to the F/S
estimator. Unlike the F/S estimator, the C-GMM estimator maintains high coverage of confidence
intervals across a wide range of sample sizes and parameter values, enabling more reliable
inference. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Statistisk sentralbyrå | en_US |
dc.relation.ispartofseries | Discussion Papers;1015 | |
dc.rights | Navngivelse-Ikkekommersiell-DelPåSammeVilkår 4.0 Internasjonal | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/deed.no | * |
dc.subject | Demand Elasticity | en_US |
dc.subject | Panel Data | en_US |
dc.subject | Heteroscedasticity | en_US |
dc.subject | Constrained Estimation | en_US |
dc.subject | Bagging | en_US |
dc.subject | GMM | en_US |
dc.title | Identifying Demand Elasticity via Heteroscedasticity: A Panel GMM Approach to Estimation and Inference | en_US |
dc.type | Working paper | en_US |
dc.rights.holder | © Statistisk sentralbyrå | en_US |
dc.source.pagenumber | 47 | en_US |